
Composition and
Decomposi-

tion/Fragmenting
of CRDTs

Carlos Baquero,
Paulo Almeida
HASLab, Minho
and INESC Tec Composition and Decomposition/Fragmenting

of CRDTs

Carlos Baquero, Paulo Almeida
HASLab, Minho and INESC Tec

Concordant, Nantes, November 2012

Composition and
Decomposi-

tion/Fragmenting
of CRDTs

Carlos Baquero,
Paulo Almeida
HASLab, Minho
and INESC Tec

Properties for state convergence
CRDTs and BloomL

An ordered set S; 〈S ,≤〉.
A join, t, deriving least upper bounds; 〈S ,≤,t〉.
An initial state, usually the least element ⊥; 〈S ,≤,t,⊥〉.
(∀a ∈ S , a t ⊥ = a)

Alternative to a (unique) initial state, is a one time init in each
replica assigning any element from S .

Join properties in a semilattice 〈S ,≤,t〉:
Idempotence, a t a = a,
Commutatity, a t b = b t a,
Associative, (a t b) t c = a t (b t c).

≤ reflects monotonic state evolution – increase of information.

Updates must conform to ≤.

In general, queries can return non-monotonic values, and in
other domains than S . E.g: Returning a set size.

Composition and
Decomposi-

tion/Fragmenting
of CRDTs

Carlos Baquero,
Paulo Almeida
HASLab, Minho
and INESC Tec

Abstract State, Concrete State, Ids

The semilattice relates the abstract states of a CRDT.

Implementations of CRDTs derive concrete states.
E.g: Sets are implemented by sequences.

Several concrete states map to a single abstract state.

Concrete states can include replica ids and local counters.

Updates that are static w.r.t ≤ can still change concrete states.

Concrete states are in a pre-order and synch (concrete merge
implementation) might not commute.

A t B = B t A, but allow a.synch(b) 6= b.synch(a).

Composition and
Decomposi-

tion/Fragmenting
of CRDTs

Carlos Baquero,
Paulo Almeida
HASLab, Minho
and INESC Tec

Objects and Literals

An object has a type T that conforms to a CRDT specification:
T

.
= semilattice 〈S ,≤,t〉 plus update and query operations.

A literal is an immutable opaque state with no further structure;
a finite bit sequence of known length that is testable for equality.

Literals can be related in a total order.

Literals are a special case of CRDTs – constant CRDTs.
E.g: 〈{π},=, either, π〉 and no update ops

Composition and
Decomposi-

tion/Fragmenting
of CRDTs

Carlos Baquero,
Paulo Almeida
HASLab, Minho
and INESC Tec

CRDT composition
cartesian product of semilattices

Let T0,T1 be two CRDT types.

Let x0, y0 : T0 and x1, y1 : T1 be typed instances:

Join composition: (x0 × x1) t (y0 × y1) ≡ (x0 t y0)× (x1 t y1)

Pointwise order: (x0 × x1) ≤ (y0 × y1) ≡ x0 ≤ y0 and x1 ≤ y1

This generalizes to any finite product/sequence, T0 × · · · × Tn.

All instances in a given position must match the position type.

Composition and
Decomposi-

tion/Fragmenting
of CRDTs

Carlos Baquero,
Paulo Almeida
HASLab, Minho
and INESC Tec

CRDT composition
generalizing products as maps

Let M be a map from literal keys to CRDT objects/instances.
M = {k0 7→ x0, . . .}
The keys are typed such that values for identical keys, in two
maps, have identical types:
if k0 7→ x0 ∈ Mx and k0 7→ y0 ∈ My implies x0, y0 : T0.

Join: Keywise join of values in common keys and union of
distinct mappings.

Order: x ≤ y if keys(x) included in keys(y) and ≤ in each
common key.

Examples are recursive filesystem (or bookmark) tree CRDTs and
P-Counters from MaxInt CRDTs. This generalization can subsume
composition by cartesian product.

Composition and
Decomposi-

tion/Fragmenting
of CRDTs

Carlos Baquero,
Paulo Almeida
HASLab, Minho
and INESC Tec

CRDT composition
linear sum

Given two ordered disjoint sets 〈P,≤P ,tP〉 and 〈Q,≤Q ,tQ〉.
Linear sum is denoted P ⊕ Q.

If not disjoint can always do disjoint union: P] Q ≡
{(p, 0)|∀p ∈ P} ∪ {(q, 1)|∀q ∈ Q}.
Make all elements in P ordered as lower than elements in Q.

Join: (x0 ∪ x1) t (y0 ∪ y1) ≡ (x0 t y0) ∪ (x1 t y1)

Order: for a, b ∈ P ∪ Q
a ≤ b ≡ a, b ∈ P and a ≤P b or
a, b ∈ Q and a ≤Q b or
a ∈ P and b ∈ Q.

An example is possibly a 2P-Set where added elements are in P and
removed are in Q, with removes dominating adds. In general it is
possible to build convergent protocols with a linear order of
evolution, E.g. Handoff Counter monotonic protocols.

Composition and
Decomposi-

tion/Fragmenting
of CRDTs

Carlos Baquero,
Paulo Almeida
HASLab, Minho
and INESC Tec

CRDT composition
lexicographic mapping

Pair mapping totally ordered literals to CRDT objects. ka 7→ xa

When joining higher key wins, if equal then join value.

Join: ka 7→ xa t kb 7→ xb ≡
ka 7→ xa iff ka > kb,
kb 7→ xb iff kb > ka,
kb 7→ xa t xb otherwise.

Order: ka 7→ xa ≤ kb 7→ xb ≡
ka < kb or (ka = kb and xa ≤ xb)

Examples: Cassandra Counters are maps of site ids to a lexicographic
mapping to MaxInt CRDTs. The lexicographic mapping allows the
counter value to decrease, by using a higher key.

Composition and
Decomposi-

tion/Fragmenting
of CRDTs

Carlos Baquero,
Paulo Almeida
HASLab, Minho
and INESC Tec

Invariants on CRDT composition
The BloomL CvRDT problem

After making a composition from basic fragments, updates that
change several fragments often need to be applied as a group.

Examples:

BloomL sets of students and sets of teams.
Edge and Vertices dependencies in graph CRDTs.

Can be addressed by transactions, but there are probably simpler
solutions to only address grouping. E.g. Shipping all composed
state together and merging together.

Possibly only the changed fragments of the composed state need
sending – using at-least-once reliable channels.

Composition and
Decomposi-

tion/Fragmenting
of CRDTs

Carlos Baquero,
Paulo Almeida
HASLab, Minho
and INESC Tec

CRDT decomposition (fragmenting)
Decomposing by replica

P-Counters (and PN-Counters) are fragmented by replica id.

Each replica updates a private position.

Queries report an aggregate, summing all positions.

Obtained by map compositions and MaxInt objects.

Cassandra counters are also fragmented by replica id.

In general no need for grouping across fragments

Composition and
Decomposi-

tion/Fragmenting
of CRDTs

Carlos Baquero,
Paulo Almeida
HASLab, Minho
and INESC Tec

CRDT decomposition (fragmenting)
Decomposing by element

Sets and maps are fragmented by elements and keys.

In OR-Sets multiple replicas act on a given fragment.

Tagging by replica based UUIDs tracks causality in each
fragment.

In general no need for grouping across fragments.

Opt-OR-Sets has two maps: From replica ids and elements.

I suspect need of grouping of updates on the two maps.

Composition and
Decomposi-

tion/Fragmenting
of CRDTs

Carlos Baquero,
Paulo Almeida
HASLab, Minho
and INESC Tec

Discussion and Open Questions

Is there a minimal kernel of composition rules?

How to obtain lightweight grouping without full SwiftCloud
transactions?

Can a CRDT instance be shared in multiple compositions?
Effects on grouping . . .

CRDT hierarchies. E.g: A G-Set can upgrade to a 2P-Set;
P-Counter to PN-Counter.

Are fragments usefull? Less correctness proofs.

Fragments seem finner grained than grouping.

Composition and decomposition dual views of the same thing?

