
Introduction Merge Management Methodology Experiment Conclusion and perspectives

Improving Textual Merge Result

Mehdi Ahmed-Nacer, Pascal Urso and François Charoy

University of Lorraine - LORIA Laboratory - France

mehdi.ahmed-nacer@loria.fr

This work is partially funded by the french national research programs
ConcoRDanT.

Introduction Merge Management Methodology Experiment Conclusion and perspectives

Context

Synchronous collaboration mode

GoogleDrive
Etherpad
Coward ...

Asynchronous collaboration mode

Git
SVN
Wikipedia ...

We focused only on asychronous collaboration and textual merge

Introduction Merge Management Methodology Experiment Conclusion and perspectives

Contribution

1 Methodology to evaluate the merge quality

2 Observing different patterns of collaboration

3 Analyze the common case that creates a conflict
4 Suggest a solution to solve the conflict

Using potential algorithms

5 Compare our approach with traditional tools used for merging

Goal

Improve the merge quality and minimise the user effort.

Introduction Merge Management Methodology Experiment Conclusion and perspectives

Basic Idea

Replay the same collaboration as git history

Deploy a merge tool

Inspired by algorithms that merge correctly

Avoid conflicts and satisfy users

Introduction Merge Management Methodology Experiment Conclusion and perspectives

State-based approach

The usual tool used for synchronization and merging is diff3

The document is managed as a state

During merge procedure
1 Find the maximum matchings

Origin Vs modified documents

2 Examine where the origin differs from
the other

In the same part of the document ?

3 Detect if the document conflicts
4 Return the result to the users with

markers

int a;

int a;
int b=0;

int a=0;
int b;

int b;

<<<<<<< user 2

int b;

int b=0;

========

>>>>>>>> user 1

int a;

int a=0;

user 2

B

Origin

 user 1

A

Merge

Merged document conflict

Introduction Merge Management Methodology Experiment Conclusion and perspectives

Operation-based approach

Operation-based algorithms integrate correctly the operations
: OT and CRDT

The document is managed as a set of operations

Operation for each line (granularity = line)

During merge procedure in OT
1 Find the concurrent

operations
2 Operation is Transformed

according to the concurrent
ones

3 Executed on the local copy
 T2 = T(Op2, Op1)=del(3)

Site 0 Site 1

Op1= insert(2,"int x;")

int a;
int b;

int a;
int b;

int a;
int a;
int x;
int b;

T2= del(3)

int a;
int x;

int a;
int x;

 T1 = T(Op1, Op2)=ins(2,"int x;")

Op2 = delete(2)

Introduction Merge Management Methodology Experiment Conclusion and perspectives

Framework

Replays the history of Git repositories

By diff3 and op-based algorithms

Transforms the state of the document
to the set of operations

Compares the merge result

Computes the metrics

Metrics

1 Merge blocks: Number of different blocks in merged
documents

2 Merge lines: Number of lines in the blocks

Introduction Merge Management Methodology Experiment Conclusion and perspectives

Observing Collaboration
1- Concurrent consecutive modifications

origin document

public int method(int a, int b)
{

}

c = a+b;
return c;

public int sum(int a, int b) {

}

c = a+b;
return c;

public int method(int a, int b)
{

}

this.c = a+b;
return this.c;

<<<<<<<<< user 2
public int sum(int a, int b) {

=========
public int method(int a, int b)
{
 this.c = a+b;
 return this.c;
>>>>>>>>> user 3
}

c = a+b;
return c;

<<<<<<<<< user 3
public int method(int a, int b)
{
 this.c = a+b;
 return this.c;
=========
public int sum(int a, int b) {

>>>>>>>>> user 2
}

c = a+b;
return c;

public int sum(int a, int b) {

}

this.c = a+b;
return this.c;

Merge

- public int method(int a, int b)
- {
+ public int sum(int a, int b) {
- public int sum(int a, int b) {
- c = a+b;
- return c;

2 blocks, 6 lines

- c = a+b;
- return c;
- public int method(int a, int b)
- {

1 blocks, 4 lines

Correction

A

CB

C'B'

Merge user

user 2 user 3

State-based
Operation-based

user 3
user 2

Introduction Merge Management Methodology Experiment Conclusion and perspectives

Observing Collaboration
2- Accidental Clean Merge (ACM)

user 1

int a;

int a;
int b;

int a;
int b;

int a;
int b;
int b;

int a;
int b;

Operation-Based

State-based

Merging

insert("int b;", 2) insert("int b;", 2)

int a;
int b;
int b;

int a;
int b;

user 2

int a;

Introduction Merge Management Methodology Experiment Conclusion and perspectives

Observing Collaboration
3- Undo/Redo

user 1

int a;
int b;

op1 = delete(2)

user 2

int a;
int b;

undo(op1) = insert("int b;",2)

int a;
int b;

int a;int a;

int a;
int b;

int a;
int b;

Merging

delete(2)

int a; int a;

Operation-Based

State-based

Introduction Merge Management Methodology Experiment Conclusion and perspectives

Adapted Merge
1- Case of Undo/Redo

Delete operations are considered as undo of insertions

Deleted elements are marked as Tombstone 1

Each operation has a visibility degree
Insertion operation increases the visibility degree
Delete operation decreases the visibility degree
The line is visibile if and only if visibility degree > 0

Same insertion of deleted element at the same
position → Redo operation

Algorithm 1: Redo Algorithm

Input: The content and the position on the document
Output: operation

1 if ((getDoc(pos).visibility = false) and (getDoc(pos) == content)
then

2 return redo(position, content);
3 else
4 return insert(position, content);

1
G. Oster et al. Tombstone transformation functions for ensuring consistency in collaborative editing systems.

CollaborateCom 2006

Introduction Merge Management Methodology Experiment Conclusion and perspectives

Adapted Merge
2- Case of Accidental Clean Merge (ACM)

Detect the ACM case during the transformation procedure

Two concurrent insertions of the same element in the same
position → noop operation

Algorithm 2: Transform(op1, op2)

Input: operations to transform : op1 and p2
Output: operation applied on the document : op

1 Let c1 and c2 respectively the content of op1 and op2
2 Let t1 and t2 respectively the type of op1 and op2
3 Let p1 and p2 respectively the position of op1 and op2
4 if (t1 = insert) and (t2 = insert) then
5 if (c1=c2) and (p1=p2) then
6 return noop();
7 else
8 if (p1 > p2) or (p1=p2 and
9 HashCode(c1) > HashCode(c2)) then

10 return insert(c1, p1+1,Sitei);
11 else
12 return insert(c1, p1,Sitei);

Introduction Merge Management Methodology Experiment Conclusion and perspectives

Description of Logs

The most popular project from GitHub

The most active project from Gitorious

XXXXXXXXXXXProject
Features

ACM undo redo

backbone 271 1357 1137

bootstrap 563 7210 3957

d3 7 19877 218

Git 1272 42734 1614

Gitorious 750 932 513

jquery 213 1947 1432

rails 426 5329 16172

status 2297 9060 6352

Table: ACM and Undo/Redo in git repositories

Introduction Merge Management Methodology Experiment Conclusion and perspectives

Evaluated Algorithms

Compute ”merge blocks” and ”merge lines”
1 State-Based: Diff 3
2 Operation-Based

OT algorithm called TTF
Correct CM and Undo/Redo: CMUndo algorithm
Correct only CM: CM algorithm

Diff 3 as reference (=100%)

Introduction Merge Management Methodology Experiment Conclusion and perspectives

Results: Merge Blocks

0

20

40

60

80

100

120

140

backbone bootstrap d3 Git Gitorious jquery rails status

Diff3

TTF

CM

CMUndo

Introduction Merge Management Methodology Experiment Conclusion and perspectives

Results: Merge Lines

0

20

40

60

80

100

120

140

backbone bootstrap d3 Git Gitorious jquery rails status

Diff3

TTF

CM

CMUndo

Introduction Merge Management Methodology Experiment Conclusion and perspectives

Statistical significance

Determined by calculating the probability of error p-value

Significance level is often α = 0.05

Difference is significant if p-value< α

TTF CM CMUndo

Diff3 0.302 0.003 0.002

TTF - 0.005 0.004

CM - - 0.004

Table: One-Way Anova

Introduction Merge Management Methodology Experiment Conclusion and perspectives

Conclusion and perspectives

Conclusion

Propose a methodology to evaluate merge quality

Observe the collaboration and detect the real conflicts

Suggest a solution to avoid some specific conflicts

Run experiments on real data

Improve text merge results

Perspectives

Extend our tool to capture file system modifications

Run experiment on file systems with different policies.

Introduction Merge Management Methodology Experiment Conclusion and perspectives

Thank you for your attention

	Introduction
	Context
	Contribution
	Basic Idea

	Merge Management
	State-based approach
	Operation-based approach

	Methodology
	Framework
	Observing Collaboration
	Observing Collaboration
	Observing Collaboration
	Adapted Merge
	Adapted Merge

	Experiment
	Description of Logs
	Evaluated Algorithms
	Results: Merge Blocks
	Results: Merge Lines
	Statistical significance

	Conclusion and perspectives
	Conclusion and perspectives

