Improving Textual Merge Result

Mehdi Ahmed-Nacer, Pascal Urso and Francois Charoy

University of Lorraine - LORIA Laboratory - France
mehdi.ahmed-nacer@Iloria.fr

This work is partially funded by the french national research programs
CONCORDANT.

o010
onotn

oi10010
o1101001
01100001
ot101100

i Loria
@ UNIVERSITE s R
DE LORRAINE “acaoton

Introduction
°

Context

@ Synchronous collaboration mode

o GoogleDrive

o Etherpad | L] —
o Coward ... & EtherPad
Google prive
@ Asynchronous collaboration mode
o Git
° SVN 7 42‘:’:’}@
o Wikipedia ... §2h,

2

Ogit

PEDIA

We focused only on asychronous collaboration and textual merge |

Introduction
.

Contribution

@ Methodology to evaluate the merge quality
@ Observing different patterns of collaboration

© Analyze the common case that creates a conflict
@ Suggest a solution to solve the conflict
e Using potential algorithms

© Compare our approach with traditional tools used for merging

Improve the merge quality and minimise the user effort.

Introduction
°

Basic Idea

@ Replay the same collaboration as git history
@ Deploy a merge tool
@ Inspired by algorithms that merge correctly

@ Avoid conflicts and satisfy users

Merge Management
°

State-based approach

@ The usual tool used for synchronization and merging is diff3

@ The document is managed as a state

@ During merge procedure Origin
@ Find the maximum matchings N

int a;

o Origin Vs modified documents / int by \
user
@ Examine where the origin differs from user2

the other inta; T meazo
int b=0; int b;
@ In the same part of the document ?

A B
@ Detect if the document conflicts Narg'e/
@ Return the result to the users with

<<<ccc< usell
markers . 52T 2

>>>>>>>> user 1

Merged document conflict

Merge Management
°

Operation-based approach

@ Operation-based algorithms integrate correctly the operations
: 0T and CRDT

@ The document is managed as a set of operations

@ Operation for each line (granularity = line)

@ During merge procedure in OT

Site 0 Site 1
© Find the concurrent T e s
int a; N ’
operations int b; it bi
@ Operation is Transformed Op1= insert(2,"int x;") Op2 = delete(2)
according to the concurrent ‘
ones int a; N

int x;
int b;

T2 = T(Op2, Op1)=del(3)
T2= del(3)

inta;
int x;

int a;
© Executed on the local copy
T1 = T(Op1, Op2)=ins(2,"int x;")

inta; ™
int x;

Methodology

Framework

@ Replays the history of Git repositories
e By diff3 and op-based algorithms
@ Transforms the state of the document
to the set of operations
o Compares the merge result
o Computes the metrics

/ \%atlon based algorithms

© Merge blocks: Number of different blocks in merged
documents
@ Merge lines: Number of lines in the blocks

Methodology
.

Observing Collaboration

1- Concurrent consecutive modifications

origin document

)
public int method(int a, int b)
¢ c = a+b;
return c;
) user 3
\
public int method(int a, int b)
{

user 2
|
public int sum(int a, int b) {

€ = a+b; this.c = a+b;
) return c; return this.c;
B) [
us% J user 3

<<<<<<<<< user 3

<<<<<<<<< user 2 public int method(int a,
{

public int sum(int a, int b) {}
© = at+b; this.c = a+b;
return this.c;

return c;

int method(int a, int b) pui sumint a, int b) {
{ c=ath;

this.c = a+h;

return this.c;
>>>>>>>>> user 3

eturn c;
>>>>>>>>> user 2

int b)\ B N

State-based ()
Operation-based)

c

}

B' }

= public int method(int a, it b)
~ c=ai; -
- returnc; ' + public int sum(int a, int b) {
- public int method(int a, int b) Correction, - public int sum(int a, int b) {
- - c=ath;

- returnc;
1 blocks, 4 lines

2 blocks, 6 lines

\

public int sum(int a, int b) {
this.c = a+h;
return this.c;

Merge user

Methodology
°

Observing Collaboration
2- Accidental Clean Merge (ACM)

user 1 user 2

int a; int a;
d insert("int b;", 2) insert("int b;", 2)

int a;
int b;

q
Merging
inta; Operation-Based inta; |
int b; int b;
int b; ® Intlb;
int a; State-based inta™
int b; int b;

Methodology
.

Observing Collaboration

3- Undo/Redo

user 1 user 2
i"' a; int a;
int b; int b;
D delete(2) op1 = delete(2)
inta; inta;
undo(op1) = insert("int b;",2)
D
inta;
int b;
Merging
inta; — Operation-Based e,
int b; @ int b;
Inta; "= State-based inta; "=

Methodology
°

Adapted Merge

1- Case of Undo/Redo

Delete operations are considered as undo of insertions

Deleted elements are marked as Tombstone 1

Each operation has a visibility degree
o Insertion operation increases the visibility degree
e Delete operation decreases the visibility degree
e The line is visibile if and only if visibility degree > 0

@ Same insertion of deleted element at the same
position — Redo operation

Algorithm 1: Redo Algorithm
Input: The content and the position on the document
Output: operation
1 if ((getDoc(pos).visibility = false) and (getDoc(pos) == content)
then
2 | return redo(position, content);
3 else
4 L return insert(position, content);

G. Oster et al. Tombstone transformation functions for ensuring consistency in collaborative editing systems.
CollaborateCom 2006

Methodology
°

Adapted Merge

2- Case of Accidental Clean Merge (ACM)

@ Detect

the ACM case during the transformation procedure

@ Two concurrent insertions of the same element in the same
position — noop operation

© O NG A WN -

11
12

Algorithm 2: Transform(opl, op2)
Input: operations to transform : opl and p2
Output: operation applied on the document : op
Let ¢; and ¢, respectively the content of opl and op2
Let t; and t, respectively the type of opl and op2
Let p; and py respectively the position of opl and op2
if (ty = insert) and (t, = insert) then
if (c1=c2) and (p1=p2) then
‘ return noop();
else

if (p1 > p2) or (p1=p2 and

HashCode(c1) > HashCode(c2)) then

| return insert(cl, pl+1,Site;);

else

L return insert(cl, pl1,Site;);

Description of Logs

Experiment
°

@ The most popular project from GitHub

@ The

most active project from Gitorious
, Features ACM | UNDO | REDO
Project
backbone 271 1357 | 1137
bootstrap 563 7210 | 3957
d3 7 19877 | 218
Git 1272 | 42734 | 1614
Gitorious 750 932 513
jquery 213 1947 | 1432
rails 426 5329 | 16172
status 2297 | 9060 | 6352

Table: ACM and Undo/Redo in git repositories

Experiment
°

Evaluated Algorithms

o Compute "merge blocks” and "merge lines”
@ State-Based: Diff3
@ Operation-Based

o OT algorithm called TTF
@ Correct CM and Undo/Redo: CMUndo algorithm
o Correct only CM: CM algorithm

e Diff3 as reference (=100%)

Experiment
°

Results: Merge Blocks

140

= Dff3
uTTF
mem

= CMUndo

backbone bootstrap d3 Git Gitorious jquery rails, status

Experiment
°

Results: Merge Lines

140

120

= Dff3
uTTF
mem

= CMUndo

backbone bootstrap d3 Git Gitorious jquery rails, status

Experiment
°

Statistical significance

@ Determined by calculating the probability of error p-value
e Significance level is often av = 0.05

o Difference is significant if p-value< «

TTF | CM | CMUNDO
Diff3 | 0.302 | 0.003 0.002
TTF - 0.005 0.004
CM - - 0.004

Table: One-Way Anova

Conclusion and perspectives
°

Conclusion and perspectives

Conclusion

@ Propose a methodology to evaluate merge quality

@ Observe the collaboration and detect the real conflicts
Suggest a solution to avoid some specific conflicts

°
@ Run experiments on real data
°

Improve text merge results

w
Perspectives

@ Extend our tool to capture file system modifications

@ Run experiment on file systems with different policies.

N,

Conclusion and perspectives
°

Thank you for your attention

	Introduction
	Context
	Contribution
	Basic Idea

	Merge Management
	State-based approach
	Operation-based approach

	Methodology
	Framework
	Observing Collaboration
	Observing Collaboration
	Observing Collaboration
	Adapted Merge
	Adapted Merge

	Experiment
	Description of Logs
	Evaluated Algorithms
	Results: Merge Blocks
	Results: Merge Lines
	Statistical significance

	Conclusion and perspectives
	Conclusion and perspectives

