Concurrency Effects Over Variable-size Identifiers in
Distributed Collaborative Editing
ConcoRDanT

Brice Nédelec
Pascal Molli Achour Mostefaoui Emmanuel Desmontils

LINA, 2 rue de la Houssiniére
BP02208, 44322 Nantes Cedex 03
first.lastQuniv-nantes.fr

L

UNIVERSITE DE NANTES ||n.'.l

first.last@univ-nantes.fr

LSEQ, an allocation strategy for variable-size CRDTs

All is about the insert operation
m insert(id,, element, idy) = alloc(idy, idg) = idejement Such as
idy < idejement < idg
Allocation strategy before

m linear

m editing behaviour dependant = design for end-editing

0 1 9
A

LSEQ allocation strategy

m lowered the space complexity : linear = polylogarithmic
m any editing behaviour

= variable-size CRDTs safe

= avoids additional protocol

= ready to use in editors?

LSEQ, an allocation strategy for variable-size CRDTs

All is about the insert operation
m insert(id,, element, idy) = alloc(idy, idg) = idejement Such as
idy < idejement < idg
Allocation strategy before

m linear

m editing behaviour dependant = design for end-editing

0 1 4 9
A N

LSEQ allocation strategy

m lowered the space complexity : linear = polylogarithmic
m any editing behaviour

= variable-size CRDTs safe

= avoids additional protocol

= ready to use in editors?

LSEQ, an allocation strategy for variable-size CRDTs

All is about the insert operation
m insert(id,, element, idy) = alloc(idy, idg) = idejement Such as
idy < idejement < idg
Allocation strategy before

m linear

m editing behaviour dependant = design for end-editing

0 1 4 7 8 9

LSEQ allocation strategy

m lowered the space complexity : linear = polylogarithmic
m any editing behaviour

= variable-size CRDTs safe

= avoids additional protocol

= ready to use in editors?

LSEQ, an allocation strategy for variable-size CRDTs

All is about the insert operation
m insert(id,, element, idy) = alloc(idy, idg) = idejement Such as
idp < idejement < Idq
Allocation strategy before
m linear

m editing behaviour dependant = design for end-editing

0 1 4 7 8 81 9

LSEQ allocation strategy

m lowered the space complexity : linear = polylogarithmic
m any editing behaviour

= variable-size CRDTs safe

= avoids additional protocol

= ready to use in editors?

LSEQ, an allocation strategy for variable-size CRDTs

All is about the insert operation
m insert(id,, element, idy) = alloc(idy, idg) = idejement Such as
idy < idejement < idg
Allocation strategy before

m linear

m editing behaviour dependant = design for end-editing

0 0.1 1 4 7 8 81 9

H A N G E S

LSEQ allocation strategy

m lowered the space complexity : linear = polylogarithmic
m any editing behaviour

= variable-size CRDTs safe

= avoids additional protocol

= ready to use in editors?

LSEQ, an allocation strategy for variable-size CRDTs

All is about the insert operation
m insert(id,, element, idy) = alloc(idy, idg) = idejement Such as
idy < idejement < idg
Allocation strategy before

m linear

m editing behaviour dependant = design for end-editing

0 0.0.1 01 1 4 7 8 81 9

C H A N G E S

LSEQ allocation strategy

m lowered the space complexity : linear = polylogarithmic
m any editing behaviour

= variable-size CRDTs safe

= avoids additional protocol

= ready to use in editors?

LSEQ, an allocation strategy for variable-size CRDTs

All is about the insert operation
m insert(id,, element, idy) = alloc(idp, idg) = idejement Such as
idp < idejement < Idq
Allocation strategy before

m linear

m editing behaviour dependant = design for end-editing

0 etc...0.0.1 0.1 1 4 7 8 81 9

D C H A N G E S

LSEQ allocation strategy

m lowered the space complexity : linear = polylogarithmic
m any editing behaviour

= variable-size CRDTs safe

= avoids additional protocol

= ready to use in editors?

Not yet. ..

left open in LSEQ perspectives : the concurrency effects
m how the LSEQ alloc function behaves when

varying number of users
varying latency

F#insert operations
10 | 100 | 200 500 | 1000

1 user (bit/id) | 65| 26.8 | 327 | 56.0| 64.2

10 users (bit/id) | 9.5 | 125.8 | 377.0 | 1062.1 | 5468.0

m expectation : sub-linear behaviour

m reality : quadratic growth

= only partially improves variable-size identifiers

Objective

m Solve the limitation of LSEQ in context involving concurrency

m Extends sub-linear upper-bound of single user to multiple users
m Study the effect of latency over the size of identifiers

= No costly additional protocol
= | can build a Distributed Collaborative Editor based on variable-size
CRDTs
m Decentralized
m Simple algorithms
m Tiny metadata

Proposal : h-LSEQ
Similar to LSEQ
m exponential tree model
m multiple sub allocation strategies

m designed for end-editing
m designed for front-editing

Different
m strategy choice

local different
LSEQ | random | different
h-LSEQ | random | similar

Intuition

The shared hash function provide an a priori agreement over participants
on which strategy to employ. This agreement avoids the possibility of
antagonist choices which would have led to a bad global allocation of
identifiers.

LSEQ vs h-LSEQ : example

LSEQ | h-LSEQ /\

Begin End Begin End

— — Collaborator 1
—— Collaborator 2

LSEQ vs h-LSEQ : example

LSEQ | h-LSEQ
31 (/ \1

o
Begin a End Begin End

— — Collaborator 1
—— Collaborator 2

userl : insert(B,a,E)
= Ivl 1 — End-editing
= [9]

LSEQ vs h-LSEQ : example

LSEQ | h-LSEQ
31 (/ \1

o
b
Begin a End Begin End

— — Collaborator 1
—— Collaborator 2

userl : insert(B,a,E)
= Ivl 1 — End-editing
= [9]
user2 : insert(a,b,E)
= Ivl 1 — Front-editing
= [30]

LSEQ vs h-LSEQ : example

LSEQ | h-LSEQ
31 (/ \1

9 &——— b
Begin a 20 ids End Begin End

— — Collaborator 1
—— Collaborator 2

userl : insert(B,a,E)
= Ivl 1 — End-editing
= [9]
user2 : insert(a,b,E)
= Ivl 1 — Front-editing
= [30]

LSEQ vs h-LSEQ : example

31

0O
Begin End

userl : insert(B,a,E)
= Ivl 1 — End-editing
= [9]
user2 : insert(a,b,E)
= Ivl 1 — Front-editing
= [30]
repeat 1 x : depth increases

repeat n x : quadratic growth

LSEQ

Begin End

— — Collaborator 1
—— Collaborator 2

LSEQ vs h-LSEQ : example
LSEQ

R 31
—
Begin End

— — Collaborator 1
—— Collaborator 2

userl : insert(B,a,E) userl : insert(B,a,E)
= Ivl 1 — End-editing = Ivll — End-editing
= [9] = [9]

user2 : insert(a,b,E)
= Ivl 1 — Front-editing
= [30]
repeat 1 x : depth increases

repeat n x : quadratic growth

LSEQ vs h-LSEQ : example

LSEQ

R 31
—
Begin End

userl : insert(B,a,E)

= Ivl 1 — End-editing
= [9]

user2 : insert(a,b,E)

= Ivl 1 — Front-editing
= [30]

repeat 1 x : depth increases

repeat n x : quadratic growth

— — Collaborator 1
—— Collaborator 2

userl : insert(B,a,E)
= Ivll — End-editing
= [9]
user2 : insert(a,b,E)
= Ivll — End-editing
= [10]

LSEQ vs h-LSEQ : example

LSEQ
0 31
o o o
Begin End Begin 2 b c d End

55 ids — — Collaborator 1
—— Collaborator 2
userl : insert(B,a,E) userl : insert(B,a,E)
= Ivl 1 — End-editing = Ivll — End-editing
= [9] = [9]
user2 : insert(a,b,E) user2 : insert(a,b,E)
= Ivl 1 — Front-editing = Ivll — End-editing
= [30] = [10]
repeat 1 x : depth increases repeat 1 x : stay Ivl 1

repeat n x : quadratic growth @ repeat n x : sub-linear behaviour

Experiments

Evaluation of LSEQ and h-LSEQ on a collaboration involving
multiple users
= Synthetic documents (100 lines)
= 10 users (10 op/each)
= Editing behaviour : end editing
= Instant delivery of messages (=~ LAN)
Expect : H LSEQ = quick growth of identifiers
B h-LSEQ = quick stabilization = sub-linear upper-bound

Evaluation of LSEQ and h-LSEQ with varying latency
= Synthetic documents (100 lines)
= 10 users (10 op/each)
= Editing behaviour : end editing

Expect : H no latency : worst-case
B latency * then avg(id.size) N\

line

Latency does not badly impact variable-size CRDTs

160 T T T T T T
LSEQ ——
h-LSEQ =======
<
2
< o
z
o
O 1 1 1 1 1 1
0 100 200 300 400 500 600

latency

700

Synthesis : experiments

h-LSEQ = hash-based choice strategy = global agreement on
employed strategies

= No additionnal cost (only a shared seed within the document)
=- Generalize the space complexity from single user to multiple users

Latency :

m No bad impact on size of identifiers
m No latency = upper-bound on the size of identifiers

= h-LSEQ supports concurrency

Conclusion

h-LSEQ handles concurrency
= limitation solved
With h-LSEQ :
m Distributed Collaborative Editors
m Decentralized

m Very simple algorithms
m tiny metadata

CRDT-based distributed collaborative editors using h-LSEQ constitutes a

good alternative to trending editors such as Google Docs, Etherpad. . . with
better scalability.

10

Future works

Develop the Distributed Collaborative Editor

Proof
m n operations : uniform distribution = O((log log n)?)
m n operations : monotononic = O((log n)?)
m n operations : worst-case = O(n?)
Proof : worst-case happens with a negligible probability
Causality tracking (still an issue in distributed systems with churn)

m does not scale in term of user
m or does not provide exact causality
= CRDTs for sequences require causality. . .

11

Thank you!

12

