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• Original interest: verification of concurrent programs

• Want to exploit program structure

• Don’t want to consider the internals of L while verifying C:

What am I doing here?

Main challenge: in practice, library 
interfaces are complicated

L’



• Liveness properties [ICALP’11]

• Communication via data structures [CONCUR’12]

• Weak memory: x86 [ESOP’12, DISC’12]

• Weak memory: C/C++ [POPL’13]

Factory of correctness definitions



• Liveness properties [ICALP’11]

• Communication via data structures [CONCUR’12]

• Weak memory: x86 [ESOP’12, DISC’12]

• Weak memory: C/C++ [POPL’13]

Factory of correctness definitions

Processors and languages do not provide 
sequential consistency

A multiprocessor is really a distributed system
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“If no new updates are 
made to the object, 
eventually all accesses 
will return the last 
updated value”

But updates never 
stop!

So what does this tell 
to me as a client?
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50 shades of eventual consistency

Rule out some 
anomalies

Preserve 
causality

Add replicated 
data types

Add 
transactions

• Different formalisms/levels of 
abstraction: how do I compare systems?

• Tied to implementation: what do I tell 
the programmer/verification person?

• How do I combine different features/
explore the design space?



• A framework for declarative specification of 
consistency models for the whole (?) zoo:

‣ different replicated data types

‣ different consistency levels

‣ transactions

• Opens lots of opportunities:

‣ semantics of combining consistency levels

‣ compositional reasoning

Main message

We can use lessons from shared-memory models
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Axiomatic memory models

• Executions in sequential consistency: linear 
sequences

...

...

• Executions in axiomatic models: partial orders

Generalise axiomatic models to replicated data types
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so so
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Session 
order

access.write(all)

Session 1 Session 2

soar

The order of submission to the database

vis
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Execution: (A, so, vis, ar)

so so
vis

vis

Session 1 Session 2

soarArbitration 
order

Lamport time, used in conflict resolution
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Execution: (A, so, vis, ar)

so so
vis

vis

Session 1 Session 2

soar

access.write(noboss)

post.write(photo)

post.read()==photo

access.read()==all

access.write(all)



System specification = set of 
executions satisfying axioms:

• Data type specifications

• Consistency constraints
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Data type specification

access.write(noboss)

post.write(photo)

post.read()==photo

access.read()==noboss

so so
vis

vis

access.write(all)

soar

vis

F: cone of influence → return value

Projection of the execution onto visible actions: (A’, vis’, ar’)

F for read-write registers: sort 
all actions according to ar and 
return the last value written



Counter data type

counter.dec()

counter.read()==0

vis

counter.inc()

vis

F: cone of influence → return value

Apply standard counter ADT operations in 
any order, without using ar

counter.inc()

vis



Counter data type

counter.dec()

counter.read()==0

vis

counter.inc()

vis

F: cone of influence → return value

Abstracts from internal counter 
representation: no vector clocks, etc.

counter.inc()

vis



Counter data type

counter.dec()

counter.read()==0

vis

counter.inc()

vis

F: cone of influence → return value

What gets taken into account depends only on vis

counter.inc()

vis

counter.inc()
so so



Counter with a reset

counter.read()==-1

vis vis

F: cone of influence → return value

Sort by ar, and then apply standard operations

counter.reset()

vis

counter.dec()counter.inc() ar ar



• F: remove cancels out vis-preceding adds

• OR-set with a reset: defined using ar

Observed-remove set

set.get()=={1}

vis vis

set.add(1)

vis

set.remove()set.add(1) vis

F: cone of influence → return value



Data type specifications

• Agnostic to the internal data type 
representation: abstract semantics based on 
relations in the execution

• All (?) of data types in “A comprehensive 
study of CRDTs”
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Session guarantees [Bayou crowd]

Per-object causal consistency [CRDT crowd?]

Causal consistency [COPS, Walter - SOSP’11]
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Axioms: Levels of consistency



Basic eventual consistency [Dynamo]

Session guarantees [Bayou crowd]

Per-object causal consistency [CRDT crowd?]

Causal consistency [COPS, Walter - SOSP’11]

Strong consistency

Axioms: Levels of consistency

Axioms ⟺ Operational semantics (in progress). Riak?
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Basic eventual consistency [Dynamo]

Session guarantees [Bayou crowd]

Per-object causal consistency [CRDT crowd?]

Causal consistency [COPS, Walter - SOSP’11]

Strong consistency

≈ C/C++ relaxed operations ≈ ARM/Power

Axioms: Levels of consistency

Specialisation to read-write registers = C/C++ model

≈ C/C++ release/acquire operations ≈ ARM/Power



Basic eventual consistency

QUERY. Return values computed using data type specifications:
8a 2 A. rval(a) = Ftype(a)(cone(a))

EVENTUAL. An operation cannot be invisible forever:
8a 2 A.¬(9 infinitely many b 2 A. sameobj(a, b) ^ ¬(a vis�! b))

THINAIR. No out-of-thin-air values:
so [ vis is acyclic
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QUERY. Return values computed using data type specifications:
8a 2 A. rval(a) = Ftype(a)(cone(a))
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a = x.read()

y.write(a)

b = y.read()

x.write(b)

initially x = y = 0

so sovis vis

Out-of-thin-air values

{ a = b = 42 }

In weak memory happens as a result of speculation



soo = so \ sameobj

RYW (Read Your Writes): soo ✓ vis

MR (Monotonic Reads): (vis; soo) ✓ vis

WFRV (Writes Follow Reads in Visibility): (vis; soo⇤; vis) ✓ vis

WFRA (Writes Follow Reads in Arbitration): (vis; soo⇤) ✓ ar

MWV (Monotonic Writes in Visibility): (soo; vis) ✓ vis

MWA (Monotonic Writes in Arbitration): soo ✓ ar

Session guarantees [Terry+ 94]
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RYW (Read Your Writes): soo ✓ vis

MR (Monotonic Reads): (vis; soo) ✓ vis

WFRV (Writes Follow Reads in Visibility): (vis; soo⇤; vis) ✓ vis

WFRA (Writes Follow Reads in Arbitration): (vis; soo⇤) ✓ ar

MWV (Monotonic Writes in Visibility): (soo; vis) ✓ vis

MWA (Monotonic Writes in Arbitration): soo ✓ ar

Session guarantees [Terry+ 94]

x.write(1)

x.read()==?

so vis

x.write(1)

x.write(2)

so ar

soo = so \ sameobj

≈ specialise to C++ coherence axioms



hbo = ((so \ sameobj) [ vis)+

so

a0

a1

vis

so

a2

a3

vis

so

an-1

an

vis

...

Preserve per-object 
happens-before:

Per-object causal consistency



Per-object causal consistency

counter.read()==2
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vis

counter.reset()
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Per-object causal consistency

counter.read()==1

vis

vis

vis

counter.reset()

counter.inc()

counter.inc() vis

vis

POCV (Per-Object Causal Visibility): hbo ✓ vis

POCA (Per-Object Causal Arbitration): hbo ✓ ar

All of Terry’s session 
guarantees = per-object 
causal consistency

Per-object happens-before: hbo = ((so \ sameobj) [ vis)+



access.write(noboss)

post.write(photo)

post.read()==photo

access.read()==all

so so
vis

vis

access.write(all)

soar

(Cross-object) causal consistency

COCV (Cross-Object Causal Visibility): (hb \ sameobj) ✓ vis

COCA (Cross-Object Causal Arbitration): hb [ ar is acyclic

Happens-before: hb = (so [ vis)+
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• ~: relates actions in the same transaction

• Main idea: factor key relations over ~

• Similar to snapshot isolation without write/write 
conflict detection

• For causal consistency equivalent to Parallel 
Snapshot Isolation (Walter)

Transactions

post.write(photo)

access.write(noboss)

post.read()==photo

access.read()==noboss

vis

vis



The need for combining consistency levels

• Causal consistency is desirable, okay with availability and 
partition-tolerance, but still expensive [Bailis+, SOCC’12]:

                       

‣ Track dependencies and wait until they are satisfied

‣ Consistency vs latency trade-off

‣ In real-world situations, including all of sb and vis makes 
the number of dependencies prohibitive

• Strong consistency sometimes needed by application 
semantics

hb = (so [ vis)+



The need for combining consistency levels

• Causal consistency is desirable, okay with availability and 
partition-tolerance, but still expensive [Bailis+, SOCC’12]:

                       

‣ Track dependencies and wait until they are satisfied

‣ Consistency vs latency trade-off

‣ In real-world situations, including all of sb and vis makes 
the number of dependencies prohibitive

• Strong consistency sometimes needed by application 
semantics

hb = (so [ vis)+

Solution from weak memory models: let the programmer 
specify which actions need which level consistency



• Assume per-object consistency as default

• Request cross-object consistency using consistency 
annotations:

• Selects vis edges that should be causal:

access.writeORD(noboss)

post.writeCSL(photo)

post.readORD()==photo

access.readORD()==noboss

so so

vis

vis, sw

access.writeORD(all)

soar

vis

a
sw�! b () a

vis�! b ^ level(a) = CSL

hb = (so [ sw)+



• Assume per-object consistency as default

• Request cross-object consistency using consistency 
annotations:

• Selects vis edges that should be causal:

access.writeORD(noboss)

post.writeCSL(photo)

post.readORD()==photo

access.readORD()==noboss

so so

vis

vis, sw

access.writeORD(all)

soar

vis

a
sw�! b () a

vis�! b ^ level(a) = CSL

hb = (so [ sw)+

Strong consistency 
added similarly



• Choosing axioms: depends on how the 
implementation works

• Choosing a mechanism for specifying consistency:

‣ Operation annotations vs fences                           
(fences affect multiple operations)

‣ The choice affects the implementation

• C/C++ model offers some guidance

• Formal specification good for exploring the design 
space and evaluating programmability

Formulating combinations is tricky



I have a dream...

• Can we reason about eventually consistent 
systems compositionally?

• Example: a cloud storage system on top of  
a key-value store

• Package a library as a built-in data type

C

L

C

L’
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I have a dream...

C

L

C

L’
A set of 
methods with 
a dedicated set 
of objects in 
the database:
... m() ...

Data type 
specification 
F

Abstraction Theorem:

Current solution: rip-off of C/C++ library 
correctness [POPL’13]

C(F ) |= P ) C(L) |= PCorollary:

L v F ) client(JC(L)K) ✓ client(JC(F )K)



Comparing libraries

• Take the most general client:

• Get all possible library histories      : describe 
library behaviour relevant to the client

•

n
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}
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Subgraph replacement

C

L

History: several relations on call/return actions

call/ret



A history component

Projection of hb to calls and returns:

call produce
...
ready.writeCSL(1)
...
return produce

call consume;
...
ready.readORD()==1;
...
return consume;
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Projection of hb to calls and returns:

call produce
...
ready.writeCSL(1)
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return produce
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A history component

Projection of hb to calls and returns:

call produce
...
ready.writeCSL(1)
...
return produce

call consume;
...
ready.readORD()==1;
...
return consume;

vis
so

so

hb

prepare data

access data

The access sees the prepared data

so

so
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• Unifies different systems, different data 
types, different levels of consistency and 
their combinations
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Conclusion

• Formal and declarative specification of 
forms of eventual consistency

• Unifies different systems, different data 
types, different levels of consistency and 
their combinations

• Connections to shared-memory models

• Interesting applications

Draft paper in 2 weeks: alexey.gotsman@imdea.org



• Exploiting testing and verification technology 
developed for weak memory models

• Push compositionality further: low-level RDT 
implementations, practical case studies, testing

• Basis for theoretical investigation of RDTs

• Letting the programmer switch between 
different types of eventual consistency within 
the same system implementation

Opportunities


