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Main challenge: in practice, library
interfaces are complicated
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Factory of correctness definitions

® |iveness properties [ICALP'I 1]

® Communication via data structures [CONCUR’|2]

® Weak memory: x86 [ESOP’|2, DISC’|2]
® Weak memory: C/C++ [POPL | 3]

Processors and languages do not provide
sequential consistency

A multiprocessor is really a distributed system




“If no new updates are
made to the object,
eventually all accesses
will return the last
updated value”
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Building reliable distributed systems
at a worldwide scale demands trade-offs
between consistency and availability.

| BY WERNER VOGELS

Eventually
Consistent

AT THE FOUNDATION of Amazon's cloud computing are
infrastructure services such as Amazon’s S3 (Simple
Storage Service), SimpleDB, and EC2 (Elastic Compute
Cloud) that provide the resources for constructing
Internet-scale computing platforms and a great variety
of applications. The requirements placed on these
infrastructure services are very strict; they need to
score high marks in the areas of security, scalability,
availability, performance, and cost-effectiveness, and
they need to meet these requirements while serving
millions of customers around the globe, continuously.
Under the covers these services are massive
distributed systems that operate on a worldwide scale.
I'his scale creates additional challenges, because
when a system processes trillions and trillions of
requests, events that normally have a low probability
of occurrence are now guaranteed to happen and
must be accounted for upfront in the design and
architecture of the system. Given the worldwide
scope of these systems, we use replication techniques
ubiquitously to guarantee consistent performance and
high availability. Although replication brings us closer

to our goals, it cannot achieve them in a perfectly

transparent manner; under a number
of conditions the customers of these
services will be confronted with the
consequences of using replication
techniques inside the services.

One of the ways in which this mani-
fests itself is in the type of data con-
sistency that is provided, particularly
when many widespread distributed
systems provide an eventual consis-
tency model in the context of data rep-
lication. When designing these large-
scale systems at Amazon, we use a set
of guiding principles and abstractions
related to large-scale data replication
and focus on the trade-offs between
high availability and data consistency.
Here, 1 present some of the relevant
background that has informed our ap-
proach to delivering reliable distrib-
uted systems that must operate on a
global scale. (An earlier version of this
article appeared as a posting on the
“All Things Distributed”™ Weblog and
was greatly improved with the help of
its readers.)

Historical Perspective

In an ideal world there would be only
one consistency model: when an up-
date is made all observers would see
that update. The first time this sur-
faced as difficult to achieve was in the
database systems of the late 1970s.
The best “period piece” on this topic
is “Notes on Distributed Databases™
by Bruce Lindsay et al.” It lays out the
fundamental principles for database
replication and discusses a number
of techniques that deal with achieving
consistency, Many of these techniques
try to achieve distribution transparen-
cy—that is, to the user of the system it
appears as if there is only one system
instead of a number of collaborating
systems. Many systems during this
time took the approach that it was bet-
ter to fail the complete system than to
break this transparency.*

In the mid-1990s, with the rise of
larger Internet systems, these practic-
¢s were revisited. At that time people
began to consider the idea that avail-
ability was perhaps the most impor-
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50 shades of eventual consistency

Session Guarantees for Weakly Consistent Replicated Data

Douglas B. Terry, Alan J. Demers, Karin Petersen, Mike J. Spreitzer, Marvin M. Theimer,
and Brent B. Welch

Don’t Settle for Eventual:
Scalable Causal Consistency for Wide-Area Storage with COPS

Wyatt Lloyd*, Michael J. Freedman*, Michael Kaminsky®, and David G. Andersen

*Princeton University, TIntel Labs, *Carnegie Mellon University

*

Conflict-free Replicated Data Types

Mare Shapiro!®, Nuno Preguica®!, Carlos Baquero®, and Marek Zawirski'-*

! INRIA, Paris, France
2 CITI, Universidade Nova de Lisboa, Portugal
* Universidade do Minho, Portugal
i UPMC, Paris, France
® LIPG, Paris, France

Transactional storage for geo-replicated systems

Yair Sovran® Russell Power Marcos K. Aguilera’  Jinyang Li*
*New York University "Microsoft Research Silicon Valley

Rule out some
anomalies

Preserve
causality

Add replicated
data types

Add
transactions



50 h ® Different formalisms/levels of
S abstraction: how do | compare systems?!

® Tied to implementation: what do | tell
the programmer/verification person?

Session Gug

Douglas B. Terry, Alaj

® How do | combine different features/
explore the design space!

Scalable Caus

causality
Wyatt Lloyd*, Michael J. Freedman*, Michael Kaminsky’, and David G. Andersens

*Princeton University, TIntel Labs, *Carnegie Mellon University

Conflict-free Replicated Data Types *

o | | Add replicated
Mare Shapiro!®, Nuno Preguica®!, Carlos Baquero®, and Marek Zawirski':
! INRIA, Paris, France data types

2 CITI, Universidade Nova de Lisboa, Portugal
* Universidade do Minho. Portugal
' UPMC, Paris, France
® LIP6, Paris, France

Transactional storage for geo-replicated systems Add

Yair Sovran* Russell Powerr Marcos K. Aguilerat  Jinyang Li transaCtiOnS

*New York University "Microsoft Research Silicon Valley



Main message

We can use lessons from shared-memory models

® A framework for declarative specification of
consistency models for the whole (?) zoo:

» different replicated data types
» different consistency levels

» transactions

® Opens lots of opportunities:

» semantics of combining consistency levels

» compositional reasoning



Axiomatic memory models

® Executions in sequential consistency: linear
sequences

> > > > P ooo

® Executions in axiomatic models: partial orders




Axiomatic memory models

® Executions in sequential consistency: linear
sequences

> > > > P ooo

® Executions in axiomatic models: partial orders

Generalise axiomatic models to replicated data types
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What happens on the interface client/database
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Session | Session 2

The order of submission to the database



Execution: (A, so, vis, ar)

access.write(all)

ar SO

access.write(noboss) post.read()==photo

VIS

SO SO

Vis

post.write(pﬁoto) access.read ()==noboss

Session | Session 2



Execution: (A, so, vis, ar)

access.write(all)

ar SO

. Y
access.write(noboss)

SO

post.write(pﬁoto)

Session |

Vis

memory models, all visible actions

Visibility order: unlike weak

/

post.read()==photo

VIS
SO

v
access.read()==noboss

Session 2

Update delivery (same object)



Execution: (A, so, vis, ar)

access.write(all)

ar SO

. Y
access.write(noboss)

SO

post.write(pﬁoto)

Session |

Vis

Visibility order: unlike weak
memory models, all visible actions

/

post.read()==photo

VIS
SO

v
access.read()==all

Session 2

Update delivery (same object)



Execution: (A, so, vis, ar)

access.write(all)

ar SO

. Y
access.write(noboss)

SO

post.write(pﬁoto)

Session |

Vis

post.read()==photo

VIS
SO

v
access.read()==all

Session 2



Execution: (A, so, vis, ar)

access.write(all)

Arbitration | lso
order

access.write(noboss) post.read()==photo
\ 4 v
post.write(photo) access.read()==all
Session | Session 2

Lamport time, used in conflict resolution
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System specification = set of
executions satisfying axioms:

® Data type specifications

® Consistency constraints

access.write(all)

ar

access.write

SO

post.write(pﬁoto)

A

SO

noboss) post.read()==photo

VIS
SO

access.read()==noboss

Figure 1. Axioms of eventual consistency

WELL-FORMEDNESS AXIOMS

SOWF: so is the union of transitive, irreflexive and total orders
on actions by each session

VISWF: Va,b.a = b = obj(a) = obj(b)

ARWE: Va,b.a = b = obj(a) = obj(b).
ar is transitive and irreflexive. and
ar|is—1(q) 1S a total order foralla € A

AUXILIARY RELATIONS
Per-object session order: soo = (so M sameobj)
Per-object causality order: hbo = (soo U vis)™
Causality order: hb = (so U vis)™

BASIC EVENTUAL CONSISTENCY AXIOMS
RvAL: Va € A. wval(a) = Fype(a)(cone(a))
EVENTUAL:
Ya € A. (3 infinitely many b € A.sameobj(a,b) A ~(a e, b))
THINAIR: so U vis 1s acyclic

SESSION GUARANTEES
RYW (Read Your Writes): soo C vis
MR (Monotonic Reads): (vis; soo) C vis
WFRV (Writes Follow Reads in Visibility): (vis; soo®; vis) C vis
WFRA (Writes Follow Reads in Arbitration): (vis;soo®) C ar
MWYV (Monotonic Writes in Visibility): (soo;vis) C vis
MWA (Monotonic Writes in Arbitration): soo C ar

CAUSALITY AXIOMS
POCYV (Per-Object Causal Visibility): hbo C vis
POCA (Per-Object Causal Arbitration): hbo C ar
COCYV (Cross-Object Causal Visibility): (hb N sameobj) C vis
COCA (Cross-Object Causal Arbitration): hb U ar 1s acyclic




Data type specification

F: cone of influence — return value

/

Projection of the execution onto visible actions: (A’, vis’, ar’)
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Data type specification

F: cone of influence — return value

/

Projection of the execution onto visible actions: (A’, vis’, ar’)

F for read-write registers: sort
all actions according to ar and
return the last value written

access.write(all)

ar SO

access.write(noboss) post.read()==photo

VIS

SO SO

Vis

post.write(pﬁoto) access.read ()==noboss



Counter data type

F: cone of influence — return value

counter.inc() counter.inc() counter.dec()

Vis Vis Vis

v

counter.read()==0

Apply standard counter ADT operations in
any order, without using ar



Counter data type

F: cone of influence — return value

counter.inc() counter.inc() counter.dec()

Vis Vis Vis

v

counter.read()==0

Abstracts from internal counter
representation: no vector clocks, etc.



Counter data type

F: cone of influence — return value

1counter.in‘c()

so,’ \‘fo
counter.inc() counter.inc() counter.dec()
Vis Vis Vis

v

counter.read()==0

What gets taken into account depends only on vis



Counter with a reset

F: cone of influence — return value

counter.inc() — counter.reset() — counter.dec()

Vis Vis Vis

v

counter.read()==-

Sort by ar, and then apply standard operations



Observed-remove set

F: cone of influence — return value

set.add(|) set.add(l) —=— set.remove()

Vis Vis Vis

set.get();={ |}

® F:remove cancels out vis-preceding adds

® OR-set with a reset: defined using ar



Data type specifications

® Agnostic to the internal data type
representation: abstract semantics based on
relations in the execution

® All (?) of data types in “A comprehensive
study of CRDTs”



Axioms: Levels of consistency

Basic eventual consistency [Dynamo]
Session guarantees [Bayou crowd]
Per-object causal consistency [CRDT crowd?]

Causal consistency [COPS,Walter - SOSP’| I]

Strong consistency
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Causal consistency [COPS,Walter - SOSP’| I]

Strong consistency

Axioms < Operational semantics (in progress). Riak?
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Axioms: Levels of consistency

Basic eventual consistency [Dynamo]
Session guarantees [Bayou crowd]

Per-object causal consistency [CRDT crowd?]
~ C/C++ relaxed operations = ARM/Power

Causal consistency [COPS,Walter - SOSP’| I]

~ C/C++ release/acquire operations = ARM/Power

Strong consistency

Specialisation to read-write registers = C/C++ model



Basic eventual consistency

QUERY. Return values computed using data type specifications:
Va € A.rval(a) = Fiyype(q)(cone(a))

EVENTUAL. An operation cannot be invisible forever:
VIS

Va € A.—(d infinitely many b € A.sameobj(a,b) A =(a — b))

THINAIR. No out-of-thin-air values:
so U vis 1s acyclic
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Basic eventual consistency

QUERY. Return values computed using data type specifications:
Va € A.rval(a) = Fiyype(q)(cone(a))

EVENTUAL. An operation cannot be invisible forever:
VIS

Va € A.—(d infinitely many b € A.sameobj(a,b) A =(a — b))

THINAIR. No out-of-thin-air values:
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Out-of-thin-air values

initially x =y =0
a = x.read() b = y.read()
y.writev(a) x.writé(b)
{a=b=42}

In weak memory happens as a result of speculation



Session guarantees [Terry™ 94]

SO0 = SO [ sameobj

RYW (Read Your Writes): soo C vis

MR (Monotonic Reads): (vis; soo) C vis

WEFRYV (Writes Follow Reads in Visibility): (vis; soo*; vis) C vis
WFRA (Writes Follow Reads in Arbitration): (vis; soo*) C ar

MWYV (Monotonic Writes in Visibility): (soo; vis) C vis

MWA (Monotonic Writes 1n Arbitration): soo C ar
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Session guarantees [Terry™ 94]

SO0 = SO [ sameobj

RYW (Read Your Writes): soo C vis

x.write(l) x.write(l)
SO I: vis SO I: ar

\4 ;l v ;l
x.read()==! X.write(2)

MWA (Monotonic Writes 1n Arbitration): soo C ar

~ specialise to C++ coherence axioms



Per-object causal consistency

Preserve per-object
2 happens-before:
i hbo = ((so N sameobj) U vis)™



Per-object causal consistency

Per-object happens-before: hbo = ((so N sameobj) U vis) ™

POCYV (Per-Object Causal Visibility): hbo C vis
POCA (Per-Object Causal Arbitration): hbo C ar

counter.inc() .

\counter. reset() N
i counter.inc()

Vis

counter.read()==2



Per-object causal consistency

Per-object happens-before: hbo = ((so N sameobj) U vis) ™

POCYV (Per-Object Causal Visibility): hbo C vis
POCA (Per-Object Causal Arbitration): hbo C ar

counter.inc() .

\countelj. reset() \
vis " counter.inc()

i Vis
counter.read()==



All of Terry’s session

Pe r-ObjeCt cau Sal C Q guarantees = per-object

causal consistency

Per-object happens-before: hbo = ((so N sameobj) U vis) ™

POCYV (Per-Object Causal Visibility): hbo C vis
POCA (Per-Object Causal Arbitration): hbo C ar

counter.inc() .

\countelj. reset() \
vis " counter.inc()

i Vis
counter.read()==



(Cross-object) causal consistency

Happens-before: hb = (so U vis)™

COCYV (Cross-Object Causal Visibility): (hb N sameobj) C vis
COCA (Cross-Object Causal Arbitration): hb U ar is acyclic

access.write(all)

ar

SO

access.write(noboss) post.read()==photo

Vis
SO SO
Vis

post.write(photo) access.read()==all



(Cross-object) causal consistency

Happens-before: hb = (so U vis)™

COCYV (Cross-Object Causal Visibility): (hb M sameobj) C vis
COCA (Cross-Object Causal Arbitration): hb U ar is acyclic

access.write(all)

ar SO

. Y
access.write(noboss)

)
SO
VIS

post.write(photo)

post.read()==photo

1R vis
4 SO
) )
s
) )
A )

*access.read()==noboss



Transactions

® ~:relates actions in the same transaction
® Main idea: factor key relations over ~

® Similar to snapshot isolation without write/write
conflict detection

® For causal consistency equivalent to Parallel
Snapshot Isolation (WValter)

post.write(@ Vs /

post.read()==photo

Vis

access.write(noboss)-#------------- > access.read()==noboss




The need for combining consistency levels

® Causal consistency is desirable, okay with availability and
partition-tolerance, but still expensive [Bailis™, SOCC’12]:

hb = (so U vis) ™

» Track dependencies and wait until they are satisfied

» Consistency vs latency trade-off

» In real-world situations, including all of sb and vis makes
the number of dependencies prohibitive

® Strong consistency sometimes needed by application
semantics



The need for combining consistency levels

® Causal consistency is desirable, okay with availability and
partition-tolerance, but still expensive [Bailis™, SOCC’12]:

hb = (so U vis) ™

» Track dependencies and wait until they are satisfied

» Consistency vs latency trade-off

» In real-world situations, including all of sb and vis makes
the number of dependencies prohibitive

® Strong consistency sometimes needed by application
semantics

Solution from weak memory models: let the programmer
specify which actions need which level consistency



® Assume per-object consistency as default

® Request cross-object consistency using consistency
annotations:

a2 b < a5 bAlevel(a) = CSL
hb = (soUsw)™

® Selects vis edges that should be causal:

access.writeoro(all)

access.writeoro(nNoboss).

A2

o \
post.writecs.(photo) #vis, sw * access.readoro()==noboss

post.readoro()==photo

SO




Strong consistency

® Assume per-object consistency as defau e
added similarly

® Request cross-object consistency using tormmsrery
annotations:

a2 b < a5 bAlevel(a) = CSL
hb = (soUsw)™

® Selects vis edges that should be causal:

access.writeoro(all)

access.writeoro(nNoboss).

A2

o \
post.writecs.(photo) #vis, sw * access.readoro()==noboss

post.readoro()==photo

SO




Formulating combinations is tricky

Choosing axioms: depends on how the
implementation works

Choosing a mechanism for specifying consistency:

» Operation annotations vs fences
(fences affect multiple operations)

» The choice affects the implementation
C/C++ model offers some guidance

Formal specification good for exploring the design
space and evaluating programmability



| have a dream...

® Can we reason about eventually consistent
systems compositionally?

® Example: a cloud storage system on top of
a key-value store

® Package a library as a built-in data type



| have a dream...

A set of
methods with
a dedicated set
of objects in
the database:

..m() ...

Abstraction Theorem:

L C F = client([C(L)]) C client([C(F)])

Corollary: C(F)

= P = (C'(L)

— P

Data type

specification
F



| have a dream...

A set of -

methods with - Data type

a dedicated set > specification
of objects in F

the database:

..m() ...

Abstraction Theorem:
L C F = client([C(L)]) C client(|C'(F)])

Corollary: C(F)E P=C(L) =P

Current solution: rip-off of C/C++ library
correctness [POPL | 3]



Comparing libraries

® Take the most general client:

while (true) {

N if (nondet()) m1 (nondet () ) ;
H else if (nondet()) mso (nondet());
k=1
else m; (nondet ()) ;
+

® Get all possible library histories [L]: describe
library behaviour relevant to the client

® [CF<=VHe[L].3H € [F].HC H’
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Comparing libraries

. Any methods,
® Take the most general client: in any order,
Any number with any parameters
of sessions while (true) { /
\n if (nondet()) m1 (nondet ()) ;
H else if (nondet()) mo(nondet());
k=1
else m; (nondet () ) ;
}

® Get all possible Iibrary|[L]]:describe

library behaviour relevant to the client

® [CF<=VHe[L].3H € [F].HC H’




Subgraph replacement
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Subgraph replacement

History: several relations on call/return actions



A history component

Projection of hb to calls and returns:

call produce call consume;
ready.writecs (1) ready.readoro()==1;

return produce return CONsumMe;
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Projection of hb to calls and returns:

call produce

SO

ready.writecs.( 1) v, ready.readorp()==1;
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return produce return cConsume;

" call consume;




A history component

Projection of hb to calls and returns:

prepare data

sol

call produce

SO

" call consume;

ready.writecs (1) —— ready.readoro()==1;
lso
return produce return cConsume;

lso

access data

The access sees the prepared data
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Opportunities

Exploiting testing and verification technology
developed for weak memory models

Push compositionality further: low-level RDT
implementations, practical case studies, testing

Basis for theoretical investigation of RDTs

Letting the programmer switch between
different types of eventual consistency within
the same system implementation



