
Semantics of eventual
consistency

Work in progress

Alexey Gotsman
IMDEA Software Institute, Madrid, Spain

Joint work with Sebastian Burckhardt (MSR)
and Hongseok Yang (Oxford)

C

L

C

• Original interest: verification of concurrent programs

• Want to exploit program structure

• Don’t want to consider the internals of L while verifying C:

What am I doing here?

L’

C

L

C

• Original interest: verification of concurrent programs

• Want to exploit program structure

• Don’t want to consider the internals of L while verifying C:

What am I doing here?

Main challenge: in practice, library
interfaces are complicated

L’

• Liveness properties [ICALP’11]

• Communication via data structures [CONCUR’12]

• Weak memory: x86 [ESOP’12, DISC’12]

• Weak memory: C/C++ [POPL’13]

Factory of correctness definitions

• Liveness properties [ICALP’11]

• Communication via data structures [CONCUR’12]

• Weak memory: x86 [ESOP’12, DISC’12]

• Weak memory: C/C++ [POPL’13]

Factory of correctness definitions

Processors and languages do not provide
sequential consistency

A multiprocessor is really a distributed system

“If no new updates are
made to the object,
eventually all accesses
will return the last
updated value”

“If no new updates are
made to the object,
eventually all accesses
will return the last
updated value”

But updates never
stop!

So what does this tell
to me as a client?

50 shades of eventual consistency

Rule out some
anomalies

Preserve
causality

Add replicated
data types

Add
transactions

50 shades of eventual consistency

Rule out some
anomalies

Preserve
causality

Add replicated
data types

Add
transactions

• Different formalisms/levels of
abstraction: how do I compare systems?

• Tied to implementation: what do I tell
the programmer/verification person?

• How do I combine different features/
explore the design space?

• A framework for declarative specification of
consistency models for the whole (?) zoo:

‣ different replicated data types

‣ different consistency levels

‣ transactions

• Opens lots of opportunities:

‣ semantics of combining consistency levels

‣ compositional reasoning

Main message

We can use lessons from shared-memory models

Axiomatic memory models

• Executions in sequential consistency: linear
sequences

...

...

• Executions in axiomatic models: partial orders

Axiomatic memory models

• Executions in sequential consistency: linear
sequences

...

...

• Executions in axiomatic models: partial orders

Generalise axiomatic models to replicated data types

Execution: (A, so, vis, ar)

access.write(noboss)

post.write(photo)

post.read()==photo

access.read()==noboss

so so
vis

vis

access.write(all)

Session 1 Session 2

soar

vis

Execution: (A, so, vis, ar)

access.write(noboss)

post.write(photo)

post.read()==photo

access.read()==noboss

so so
vis

vis

Actions

access.write(all)

Session 1 Session 2

soar

What happens on the interface client/database

vis

Execution: (A, so, vis, ar)

access.write(noboss)

post.write(photo)

post.read()==photo

access.read()==noboss

so so
vis

vis

access.write(all)

Session 1 Session 2

soar

vis

Execution: (A, so, vis, ar)

access.write(noboss)

post.write(photo)

post.read()==photo

access.read()==noboss

so so
vis

vis
Session
order

access.write(all)

Session 1 Session 2

soar

The order of submission to the database

vis

Execution: (A, so, vis, ar)

access.write(noboss)

post.write(photo)

post.read()==photo

access.read()==noboss

so so
vis

vis

access.write(all)

Session 1 Session 2

soar

vis

Execution: (A, so, vis, ar)

access.write(noboss)

post.write(photo)

post.read()==photo

access.read()==noboss

so so
vis

vis

Visibility order: unlike weak
memory models, all visible actionsaccess.write(all)

Session 1 Session 2

soar

Update delivery (same object)

vis

Execution: (A, so, vis, ar)

so so
vis

vis

Session 1 Session 2

soar

Update delivery (same object)

access.write(noboss)

post.write(photo)

post.read()==photo

access.read()==all

access.write(all)
Visibility order: unlike weak

memory models, all visible actions

Execution: (A, so, vis, ar)

so so
vis

vis

Session 1 Session 2

soar

access.write(noboss)

post.write(photo)

post.read()==photo

access.read()==all

access.write(all)

Execution: (A, so, vis, ar)

so so
vis

vis

Session 1 Session 2

soarArbitration
order

Lamport time, used in conflict resolution

access.write(noboss)

post.write(photo)

post.read()==photo

access.read()==all

access.write(all)

Execution: (A, so, vis, ar)

so so
vis

vis

Session 1 Session 2

soar

access.write(noboss)

post.write(photo)

post.read()==photo

access.read()==all

access.write(all)

System specification = set of
executions satisfying axioms:

• Data type specifications

• Consistency constraints

Data type specification

access.write(noboss)

post.write(photo)

post.read()==photo

access.read()==noboss

so so
vis

vis

access.write(all)

soar

vis

F: cone of influence → return value

Projection of the execution onto visible actions: (A’, vis’, ar’)

Data type specification

access.write(noboss)

post.write(photo)

post.read()==photo

access.read()==noboss

so so
vis

vis

access.write(all)

soar

vis

F: cone of influence → return value

Projection of the execution onto visible actions: (A’, vis’, ar’)

F for read-write registers: sort
all actions according to ar and
return the last value written

Counter data type

counter.dec()

counter.read()==0

vis

counter.inc()

vis

F: cone of influence → return value

Apply standard counter ADT operations in
any order, without using ar

counter.inc()

vis

Counter data type

counter.dec()

counter.read()==0

vis

counter.inc()

vis

F: cone of influence → return value

Abstracts from internal counter
representation: no vector clocks, etc.

counter.inc()

vis

Counter data type

counter.dec()

counter.read()==0

vis

counter.inc()

vis

F: cone of influence → return value

What gets taken into account depends only on vis

counter.inc()

vis

counter.inc()
so so

Counter with a reset

counter.read()==-1

vis vis

F: cone of influence → return value

Sort by ar, and then apply standard operations

counter.reset()

vis

counter.dec()counter.inc() ar ar

• F: remove cancels out vis-preceding adds

• OR-set with a reset: defined using ar

Observed-remove set

set.get()=={1}

vis vis

set.add(1)

vis

set.remove()set.add(1) vis

F: cone of influence → return value

Data type specifications

• Agnostic to the internal data type
representation: abstract semantics based on
relations in the execution

• All (?) of data types in “A comprehensive
study of CRDTs”

Basic eventual consistency [Dynamo]

Session guarantees [Bayou crowd]

Per-object causal consistency [CRDT crowd?]

Causal consistency [COPS, Walter - SOSP’11]

Strong consistency

Axioms: Levels of consistency

Basic eventual consistency [Dynamo]

Session guarantees [Bayou crowd]

Per-object causal consistency [CRDT crowd?]

Causal consistency [COPS, Walter - SOSP’11]

Strong consistency

Axioms: Levels of consistency

Axioms ⟺ Operational semantics (in progress). Riak?

Basic eventual consistency [Dynamo]

Session guarantees [Bayou crowd]

Per-object causal consistency [CRDT crowd?]

Causal consistency [COPS, Walter - SOSP’11]

Strong consistency

Axioms: Levels of consistency

Basic eventual consistency [Dynamo]

Session guarantees [Bayou crowd]

Per-object causal consistency [CRDT crowd?]

Causal consistency [COPS, Walter - SOSP’11]

Strong consistency

≈ C/C++ relaxed operations ≈ ARM/Power

Axioms: Levels of consistency

Specialisation to read-write registers = C/C++ model

≈ C/C++ release/acquire operations ≈ ARM/Power

Basic eventual consistency

QUERY. Return values computed using data type specifications:
8a 2 A. rval(a) = Ftype(a)(cone(a))

EVENTUAL. An operation cannot be invisible forever:
8a 2 A.¬(9 infinitely many b 2 A. sameobj(a, b) ^ ¬(a vis�! b))

THINAIR. No out-of-thin-air values:
so [vis is acyclic

Basic eventual consistency

QUERY. Return values computed using data type specifications:
8a 2 A. rval(a) = Ftype(a)(cone(a))

EVENTUAL. An operation cannot be invisible forever:
8a 2 A.¬(9 infinitely many b 2 A. sameobj(a, b) ^ ¬(a vis�! b))

THINAIR. No out-of-thin-air values:
so [vis is acyclic

Basic eventual consistency

QUERY. Return values computed using data type specifications:
8a 2 A. rval(a) = Ftype(a)(cone(a))

EVENTUAL. An operation cannot be invisible forever:
8a 2 A.¬(9 infinitely many b 2 A. sameobj(a, b) ^ ¬(a vis�! b))

THINAIR. No out-of-thin-air values:
so [vis is acyclic

Basic eventual consistency

QUERY. Return values computed using data type specifications:
8a 2 A. rval(a) = Ftype(a)(cone(a))

EVENTUAL. An operation cannot be invisible forever:
8a 2 A.¬(9 infinitely many b 2 A. sameobj(a, b) ^ ¬(a vis�! b))

THINAIR. No out-of-thin-air values:
so [vis is acyclic

a = x.read()

y.write(a)

b = y.read()

x.write(b)

initially x = y = 0

so sovis vis

Out-of-thin-air values

{ a = b = 42 }

In weak memory happens as a result of speculation

soo = so \ sameobj

RYW (Read Your Writes): soo ✓ vis

MR (Monotonic Reads): (vis; soo) ✓ vis

WFRV (Writes Follow Reads in Visibility): (vis; soo⇤; vis) ✓ vis

WFRA (Writes Follow Reads in Arbitration): (vis; soo⇤) ✓ ar

MWV (Monotonic Writes in Visibility): (soo; vis) ✓ vis

MWA (Monotonic Writes in Arbitration): soo ✓ ar

Session guarantees [Terry+ 94]

soo = so \ sameobj

RYW (Read Your Writes): soo ✓ vis

MR (Monotonic Reads): (vis; soo) ✓ vis

WFRV (Writes Follow Reads in Visibility): (vis; soo⇤; vis) ✓ vis

WFRA (Writes Follow Reads in Arbitration): (vis; soo⇤) ✓ ar

MWV (Monotonic Writes in Visibility): (soo; vis) ✓ vis

MWA (Monotonic Writes in Arbitration): soo ✓ ar

Session guarantees [Terry+ 94]

≈ specialise to C++ coherence axioms

RYW (Read Your Writes): soo ✓ vis

MR (Monotonic Reads): (vis; soo) ✓ vis

WFRV (Writes Follow Reads in Visibility): (vis; soo⇤; vis) ✓ vis

WFRA (Writes Follow Reads in Arbitration): (vis; soo⇤) ✓ ar

MWV (Monotonic Writes in Visibility): (soo; vis) ✓ vis

MWA (Monotonic Writes in Arbitration): soo ✓ ar

Session guarantees [Terry+ 94]

x.write(1)

x.read()==?

so vis

x.write(1)

x.write(2)

so ar

soo = so \ sameobj

≈ specialise to C++ coherence axioms

hbo = ((so \ sameobj) [vis)+

so

a0

a1

vis

so

a2

a3

vis

so

an-1

an

vis

...

Preserve per-object
happens-before:

Per-object causal consistency

Per-object causal consistency

counter.read()==2

vis

vis

counter.reset()

counter.inc()

counter.inc() vis

vis

POCV (Per-Object Causal Visibility): hbo ✓ vis

POCA (Per-Object Causal Arbitration): hbo ✓ ar

Per-object happens-before: hbo = ((so \ sameobj) [vis)+

Per-object causal consistency

counter.read()==1

vis

vis

vis

counter.reset()

counter.inc()

counter.inc() vis

vis

POCV (Per-Object Causal Visibility): hbo ✓ vis

POCA (Per-Object Causal Arbitration): hbo ✓ ar

Per-object happens-before: hbo = ((so \ sameobj) [vis)+

Per-object causal consistency

counter.read()==1

vis

vis

vis

counter.reset()

counter.inc()

counter.inc() vis

vis

POCV (Per-Object Causal Visibility): hbo ✓ vis

POCA (Per-Object Causal Arbitration): hbo ✓ ar

All of Terry’s session
guarantees = per-object
causal consistency

Per-object happens-before: hbo = ((so \ sameobj) [vis)+

access.write(noboss)

post.write(photo)

post.read()==photo

access.read()==all

so so
vis

vis

access.write(all)

soar

(Cross-object) causal consistency

COCV (Cross-Object Causal Visibility): (hb \ sameobj) ✓ vis

COCA (Cross-Object Causal Arbitration): hb [ar is acyclic

Happens-before: hb = (so [vis)+

access.write(noboss)

post.write(photo)

post.read()==photo

access.read()==noboss

so so
vis

vis

access.write(all)

soar

vis

(Cross-object) causal consistency

COCV (Cross-Object Causal Visibility): (hb \ sameobj) ✓ vis

COCA (Cross-Object Causal Arbitration): hb [ar is acyclic

Happens-before: hb = (so [vis)+

• ~: relates actions in the same transaction

• Main idea: factor key relations over ~

• Similar to snapshot isolation without write/write
conflict detection

• For causal consistency equivalent to Parallel
Snapshot Isolation (Walter)

Transactions

post.write(photo)

access.write(noboss)

post.read()==photo

access.read()==noboss

vis

vis

The need for combining consistency levels

• Causal consistency is desirable, okay with availability and
partition-tolerance, but still expensive [Bailis+, SOCC’12]:

‣ Track dependencies and wait until they are satisfied

‣ Consistency vs latency trade-off

‣ In real-world situations, including all of sb and vis makes
the number of dependencies prohibitive

• Strong consistency sometimes needed by application
semantics

hb = (so [vis)+

The need for combining consistency levels

• Causal consistency is desirable, okay with availability and
partition-tolerance, but still expensive [Bailis+, SOCC’12]:

‣ Track dependencies and wait until they are satisfied

‣ Consistency vs latency trade-off

‣ In real-world situations, including all of sb and vis makes
the number of dependencies prohibitive

• Strong consistency sometimes needed by application
semantics

hb = (so [vis)+

Solution from weak memory models: let the programmer
specify which actions need which level consistency

• Assume per-object consistency as default

• Request cross-object consistency using consistency
annotations:

• Selects vis edges that should be causal:

access.writeORD(noboss)

post.writeCSL(photo)

post.readORD()==photo

access.readORD()==noboss

so so

vis

vis, sw

access.writeORD(all)

soar

vis

a
sw�! b () a

vis�! b ^ level(a) = CSL

hb = (so [sw)+

• Assume per-object consistency as default

• Request cross-object consistency using consistency
annotations:

• Selects vis edges that should be causal:

access.writeORD(noboss)

post.writeCSL(photo)

post.readORD()==photo

access.readORD()==noboss

so so

vis

vis, sw

access.writeORD(all)

soar

vis

a
sw�! b () a

vis�! b ^ level(a) = CSL

hb = (so [sw)+

Strong consistency
added similarly

• Choosing axioms: depends on how the
implementation works

• Choosing a mechanism for specifying consistency:

‣ Operation annotations vs fences
(fences affect multiple operations)

‣ The choice affects the implementation

• C/C++ model offers some guidance

• Formal specification good for exploring the design
space and evaluating programmability

Formulating combinations is tricky

I have a dream...

• Can we reason about eventually consistent
systems compositionally?

• Example: a cloud storage system on top of
a key-value store

• Package a library as a built-in data type

C

L

C

L’

I have a dream...

C

L

C

L’
A set of
methods with
a dedicated set
of objects in
the database:
... m() ...

Data type
specification
F

Abstraction Theorem:

C(F) |= P) C(L) |= PCorollary:

L v F) client(JC(L)K) ✓ client(JC(F)K)

I have a dream...

C

L

C

L’
A set of
methods with
a dedicated set
of objects in
the database:
... m() ...

Data type
specification
F

Abstraction Theorem:

Current solution: rip-off of C/C++ library
correctness [POPL’13]

C(F) |= P) C(L) |= PCorollary:

L v F) client(JC(L)K) ✓ client(JC(F)K)

Comparing libraries

• Take the most general client:

• Get all possible library histories : describe
library behaviour relevant to the client

•

n

k
k=1

while (true) {

if (nondet()) m1(nondet());

else if (nondet()) m2(nondet());

...

else ml(nondet());

}

0

BBBBBBB@

1

CCCCCCCA

JLK

L v F () 8H 2 JLK. 9H 0 2 JF K.H v H 0

Comparing libraries

• Take the most general client:

• Get all possible library histories : describe
library behaviour relevant to the client

•

n

k
k=1

Any number
of sessions

while (true) {

if (nondet()) m1(nondet());

else if (nondet()) m2(nondet());

...

else ml(nondet());

}

0

BBBBBBB@

1

CCCCCCCA

JLK

L v F () 8H 2 JLK. 9H 0 2 JF K.H v H 0

Comparing libraries

• Take the most general client:

• Get all possible library histories : describe
library behaviour relevant to the client

•

n

k
k=1

Any number
of sessions

Any methods,
in any order,

with any parameters

while (true) {

if (nondet()) m1(nondet());

else if (nondet()) m2(nondet());

...

else ml(nondet());

}

0

BBBBBBB@

1

CCCCCCCA

JLK

L v F () 8H 2 JLK. 9H 0 2 JF K.H v H 0

Comparing libraries

• Take the most general client:

• Get all possible library histories : describe
library behaviour relevant to the client

•

n

k
k=1

Any number
of sessions

Any methods,
in any order,

with any parameters

while (true) {

if (nondet()) m1(nondet());

else if (nondet()) m2(nondet());

...

else ml(nondet());

}

0

BBBBBBB@

1

CCCCCCCA

JLK

L v F () 8H 2 JLK. 9H 0 2 JF K.H v H 0

Subgraph replacement

C

L

Subgraph replacement

C

L

Subgraph replacement

C

L

call/ret

Subgraph replacement

C

L

History: several relations on call/return actions

call/ret

A history component

Projection of hb to calls and returns:

call produce
...
ready.writeCSL(1)
...
return produce

call consume;
...
ready.readORD()==1;
...
return consume;

A history component

Projection of hb to calls and returns:

call produce
...
ready.writeCSL(1)
...
return produce

call consume;
...
ready.readORD()==1;
...
return consume;

vis

A history component

Projection of hb to calls and returns:

call produce
...
ready.writeCSL(1)
...
return produce

call consume;
...
ready.readORD()==1;
...
return consume;

vis
so

A history component

Projection of hb to calls and returns:

call produce
...
ready.writeCSL(1)
...
return produce

call consume;
...
ready.readORD()==1;
...
return consume;

vis
so

so

A history component

Projection of hb to calls and returns:

call produce
...
ready.writeCSL(1)
...
return produce

call consume;
...
ready.readORD()==1;
...
return consume;

vis
so

so

hb

A history component

Projection of hb to calls and returns:

call produce
...
ready.writeCSL(1)
...
return produce

call consume;
...
ready.readORD()==1;
...
return consume;

vis
so

so

hb

prepare data

access data

The access sees the prepared data

so

so

Conclusion

• Formal and declarative specification of
forms of eventual consistency

• Unifies different systems, different data
types, different levels of consistency and
their combinations

• Connections to shared-memory models

• Interesting applications

Conclusion

• Formal and declarative specification of
forms of eventual consistency

• Unifies different systems, different data
types, different levels of consistency and
their combinations

• Connections to shared-memory models

• Interesting applications

Draft paper in 2 weeks: alexey.gotsman@imdea.org

• Exploiting testing and verification technology
developed for weak memory models

• Push compositionality further: low-level RDT
implementations, practical case studies, testing

• Basis for theoretical investigation of RDTs

• Letting the programmer switch between
different types of eventual consistency within
the same system implementation

Opportunities

