
LSEQ: an Adaptive Structure for Sequences
in Distributed Collaborative Editing

ConcoRDanT

Brice Nédelec
Pascal Molli Achour Mostefaoui Emmanuel Desmontils

LINA, 2 rue de la Houssinière
BP02208, 44322 Nantes Cedex 03
first.last@univ-nantes.fr

first.last@univ-nantes.fr

Distributed Collaborative Editors

DCE allow to distribute the
work across space, time,
organizations.

example : Google Docs,
Google Wave, Etherpad, Git,
Subversion, Wikipedia,
CoVim. . .

1

Current editors are not entirely satisfying

Single point of failure : the server is down, I cannot work on my
document anymore. . .

Privacy concern : the owner of the server owns the data. . . He can
sell it to third-party company. (e.g. advertisement company)

⇒ As a user, I don’t want my editor got any of these !
⇒ Deny the enslavement to a coordination provider !
⇒ I still want something as appealing as Google Docs though. . .

2

Benefits of the optimistic replication

most editors relies on the optimistic replication approach.

high availability of data : each user has its own local replica
two phases operations :

1 locally prepare the result of the operation and send it
2 integrate the result of the remote operations to the data

when the data is a document → modifications are insert or delete an
element

⇒ element : character, line, paragraph. . .

modifications of the document must ensure the 3 properties (CCI) :

1 Convergence : all replicas eventually reach an identical state
2 Causality : any operation needs to reflect the operations that occurred

causally before it
3 Intention : the effect of an operation needs to meet the intention of

the user that ordered it

⇒ a very efficient approach that belongs to optimistic replication

⇒ Conflict-free Replicated Data Types

3

Benefits of the optimistic replication

most editors relies on the optimistic replication approach.

high availability of data : each user has its own local replica
two phases operations :

1 locally prepare the result of the operation and send it
2 integrate the result of the remote operations to the data

when the data is a document → modifications are insert or delete an
element

⇒ element : character, line, paragraph. . .

modifications of the document must ensure the 3 properties (CCI) :

1 Convergence : all replicas eventually reach an identical state
2 Causality : any operation needs to reflect the operations that occurred

causally before it
3 Intention : the effect of an operation needs to meet the intention of

the user that ordered it

⇒ a very efficient approach that belongs to optimistic replication

⇒ Conflict-free Replicated Data Types

3

Benefits of the optimistic replication

most editors relies on the optimistic replication approach.

high availability of data : each user has its own local replica
two phases operations :

1 locally prepare the result of the operation and send it
2 integrate the result of the remote operations to the data

when the data is a document → modifications are insert or delete an
element

⇒ element : character, line, paragraph. . .

modifications of the document must ensure the 3 properties (CCI) :

1 Convergence : all replicas eventually reach an identical state
2 Causality : any operation needs to reflect the operations that occurred

causally before it
3 Intention : the effect of an operation needs to meet the intention of

the user that ordered it

⇒ a very efficient approach that belongs to optimistic replication

⇒ Conflict-free Replicated Data Types

3

Benefits of the optimistic replication

most editors relies on the optimistic replication approach.

high availability of data : each user has its own local replica
two phases operations :

1 locally prepare the result of the operation and send it
2 integrate the result of the remote operations to the data

when the data is a document → modifications are insert or delete an
element

⇒ element : character, line, paragraph. . .

modifications of the document must ensure the 3 properties (CCI) :

1 Convergence : all replicas eventually reach an identical state
2 Causality : any operation needs to reflect the operations that occurred

causally before it
3 Intention : the effect of an operation needs to meet the intention of

the user that ordered it

⇒ a very efficient approach that belongs to optimistic replication

⇒ Conflict-free Replicated Data Types

3

CRDTs for sequences
Conflict-free Replicated Data Types

simple abstract type for sequences that can model documents

optimistic replication : convergent, two phases operations . . .

avoids the difficult task of sovling conflicts

2 commutative operations : insert and delete

⇒ ins/ins, ins/del, del/del
⇒ except : ins(a)/del(a) ⇒ require causality : ins(a) → del(a)

1 identifier for each element in sequence

document → character, line, paragraph. . .
unique, non mutable identifier
totally ordered
the order on ids makes the sequence

⇒ delete(idelement)

⇒ insert(idp, element, idq) ⇒ alloc (idp, idq) ⇒ idp < idelement < idq

4

CRDTs for sequences
Conflict-free Replicated Data Types

simple abstract type for sequences that can model documents

optimistic replication : convergent, two phases operations . . .

avoids the difficult task of sovling conflicts

2 commutative operations : insert and delete

⇒ ins/ins, ins/del, del/del
⇒ except : ins(a)/del(a) ⇒ require causality : ins(a) → del(a)

1 identifier for each element in sequence

document → character, line, paragraph. . .
unique, non mutable identifier
totally ordered
the order on ids makes the sequence

⇒ delete(idelement)

⇒ insert(idp, element, idq) ⇒ alloc (idp, idq) ⇒ idp < idelement < idq

4

Allocation of identifiers matters

D O C E N G

0 91 2 3 4 5 6

0 9

E N G

1 2 3

D O C

D O C

0.1 0.2 0.3

E N G

1 2 3again. . .

linearly growing ids

document with 1000 lines ⇒ max(id .size) = 1000

5

Allocation of identifiers matters

D O C E N G

0 91 2 3 4 5 6

0 9

E N G

1 2 3

D O C

D O C

0.1 0.2 0.3

E N G

1 2 3again. . .

linearly growing ids

document with 1000 lines ⇒ max(id .size) = 1000

5

Allocation of identifiers matters

D O C E N G

0 91 2 3 4 5 6

0 9

E N G

1 2 3

D O C

D O C

0.1 0.2 0.3

E N G

1 2 3again. . .

linearly growing ids

document with 1000 lines ⇒ max(id .size) = 1000

5

Allocation of identifiers matters

D O C E N G

0 91 2 3 4 5 6

0 9

E N G

1 2 3

D O C

D O C

0.1 0.2 0.3

E N G

1 2 3again. . .

linearly growing ids

document with 1000 lines ⇒ max(id .size) = 1000

5

Allocation of identifiers matters

D O C E N G

0 91 2 3 4 5 6

0 9

E N G

1 2 3

D O C

D O C

0.1 0.2 0.3

E N G

1 2 3again. . .

linearly growing ids

document with 1000 lines ⇒ max(id .size) = 1000

5

Allocation of identifiers matters

D O C E N G

0 91 2 3 4 5 6

0 9

E N G

1 2 3

D O C

D O C

0.1 0.2 0.3

E N G

1 2 3again. . .

linearly growing ids

document with 1000 lines ⇒ max(id .size) = 1000

5

Allocation of identifiers matters

D O C E N G

0 91 2 3 4 5 6

0 9

E N G

1 2 3

D O C

D O C

0.1 0.2 0.3

E N G

1 2 3again. . .

linearly growing ids

document with 1000 lines ⇒ max(id .size) = 1000

5

Allocation of identifiers matters

D O C E N G

0 91 2 3 4 5 6

0 9

E N G

1 2 3

D O C

D O C

0.1 0.2 0.3

E N G

1 2 3again. . .

linearly growing ids

document with 1000 lines ⇒ max(id .size) = 1000

5

Allocation of identifiers matters

D O C E N G

0 91 2 3 4 5 6

0 9

E N G

1 2 3

D O C

D O C

0.1 0.2 0.3

E N G

1 2 3again. . .

linearly growing ids

document with 1000 lines ⇒ max(id .size) = 1000

5

Allocation of identifiers matters

D O C E N G

0 91 2 3 4 5 6

0 9

E N G

1 2 3

D O C

D O C

0.1 0.2 0.3

E N G

1 2 3again. . .

linearly growing ids

document with 1000 lines ⇒ max(id .size) = 1000

5

Allocation of identifiers matters

D O C E N G

0 91 2 3 4 5 6

0 9

E N G

1 2 3

D O C

D O C

0.1 0.2 0.3

E N G

1 2 3again. . .

linearly growing ids

document with 1000 lines ⇒ max(id .size) = 1000

5

Problem : lowering the size of identifiers

Variable-size identifier

A variable-size identifier id is
a sequence of numbers
id = [p1.p2 . . . pn] which can
designate a path in a tree.

IdD = [10]

IdO = [10.13]

0 99
10 11 14

Begin End

13 42 92

D
N G

O C E

Problem statement

Let D a document on which n insert operations have been performed. Let
I(D) = {id |(, id) ∈ D}. The function alloc(idp, idq) should provide
identifiers such as : ∑

id∈I

|id |2
n < O(n)

⇒ No cleaning of the structure required !
6

Problem : lowering the size of identifiers

Variable-size identifier

A variable-size identifier id is
a sequence of numbers
id = [p1.p2 . . . pn] which can
designate a path in a tree.

IdD = [10]

IdO = [10.13]

0 99
10 11 14

Begin End

13 42 92

D
N G

O C E

Problem statement

Let D a document on which n insert operations have been performed. Let
I(D) = {id |(, id) ∈ D}. The function alloc(idp, idq) should provide
identifiers such as : ∑

id∈I

|id |2
n < O(n)

⇒ No cleaning of the structure required !
6

Problem : lowering the size of identifiers

Variable-size identifier

A variable-size identifier id is
a sequence of numbers
id = [p1.p2 . . . pn] which can
designate a path in a tree.

IdD = [10]

IdO = [10.13]

0 99
10 11 14

Begin End

13 42 92

D
N G

O C E

Problem statement

Let D a document on which n insert operations have been performed. Let
I(D) = {id |(, id) ∈ D}. The function alloc(idp, idq) should provide
identifiers such as : ∑

id∈I

|id |2
n < O(n)

⇒ No cleaning of the structure required !
6

Problem : lowering the size of identifiers

Variable-size identifier

A variable-size identifier id is
a sequence of numbers
id = [p1.p2 . . . pn] which can
designate a path in a tree.

IdD = [10]

IdO = [10.13]

0 99
10 11 14

Begin End

13 42 92

D
N G

O C E

Problem statement

Let D a document on which n insert operations have been performed. Let
I(D) = {id |(, id) ∈ D}. The function alloc(idp, idq) should provide
identifiers such as : ∑

id∈I

|id |2
n < O(n)

⇒ No cleaning of the structure required !
6

Problem : lowering the size of identifiers

Variable-size identifier

A variable-size identifier id is
a sequence of numbers
id = [p1.p2 . . . pn] which can
designate a path in a tree.

IdD = [10]

IdO = [10.13]

0 99
10 11 14

Begin End

13 42 92

D
N G

O C E

Problem statement

Let D a document on which n insert operations have been performed. Let
I(D) = {id |(, id) ∈ D}. The function alloc(idp, idq) should provide
identifiers such as : ∑

id∈I

|id |2
n < O(n)

⇒ No cleaning of the structure required !
6

Proposal : LSEQ

LSEQ relies on 3 components :

exponential tree : we assume that when ↗ depth, it means that a
lot of insertions were done and more are probably upcoming. We need
more available nodes

multiple allocation strategies : a strategy designed for end-editing
is not sufficient to handle any editing behaviour

random strategy choice : I have multiple sub allocation strategies.
Which one should I choose ?

Intuition

As it is complex to predict the editing behaviour, some depths of the tree
on a given path can be lost if the reward compensates the loss.
In other terms, even if LSEQ chooses the wrong strategy at a given time,
it will eventually choose the good one, and that choice will amortize the
cost of all previous lost depths.

7

Example : use case DNG ? Wait... DOCENG !
Three components :

Exponential tree
⇒ 32 nodes maximum at depth-1, 64 nodes maximum at depth-2. . .

Two allocation strategies
⇒ : designed for end-editing
⇒ : designed for front-editing

Random strategy choice

StrategyBase

boundary+32

? ? ?

boundary–64

? ? ?128

0 319 10 23

Begin End

D N G

O

32

C

51

E

60

1 insert(Begin,D,End)

2 insert(D,N,End)

3 insert(N,G,End)

4 insert(D,E,N)

⇒ no room
⇒ randomize strat
⇒ front-editing

5 insert(D,C,E)

6 insert(D,O,C)
8

Example : use case DNG ? Wait... DOCENG !
Three components :

Exponential tree
⇒ 32 nodes maximum at depth-1, 64 nodes maximum at depth-2. . .

Two allocation strategies
⇒ : designed for end-editing
⇒ : designed for front-editing

Random strategy choice

StrategyBase

boundary+32

? ? ?

boundary–64

? ? ?128

0 319 10 23

Begin End

D N G

O

32

C

51

E

60

1 insert(Begin,D,End)

2 insert(D,N,End)

3 insert(N,G,End)

4 insert(D,E,N)

⇒ no room
⇒ randomize strat
⇒ front-editing

5 insert(D,C,E)

6 insert(D,O,C)
8

Example : use case DNG ? Wait... DOCENG !
Three components :

Exponential tree
⇒ 32 nodes maximum at depth-1, 64 nodes maximum at depth-2. . .

Two allocation strategies
⇒ : designed for end-editing
⇒ : designed for front-editing

Random strategy choice

StrategyBase

boundary+32

? ? ?

boundary–64

? ? ?128

0 319 10 23

Begin End

D N G

O

32

C

51

E

60

1 insert(Begin,D,End)

2 insert(D,N,End)

3 insert(N,G,End)

4 insert(D,E,N)

⇒ no room
⇒ randomize strat
⇒ front-editing

5 insert(D,C,E)

6 insert(D,O,C)
8

Example : use case DNG ? Wait... DOCENG !
Three components :

Exponential tree
⇒ 32 nodes maximum at depth-1, 64 nodes maximum at depth-2. . .

Two allocation strategies
⇒ : designed for end-editing
⇒ : designed for front-editing

Random strategy choice

StrategyBase

boundary+32

? ? ?

boundary–64

? ? ?128

0 319 10 23

Begin End

D N G

O

32

C

51

E

60

1 insert(Begin,D,End)

2 insert(D,N,End)

3 insert(N,G,End)

4 insert(D,E,N)

⇒ no room
⇒ randomize strat
⇒ front-editing

5 insert(D,C,E)

6 insert(D,O,C)
8

Example : use case DNG ? Wait... DOCENG !
Three components :

Exponential tree
⇒ 32 nodes maximum at depth-1, 64 nodes maximum at depth-2. . .

Two allocation strategies
⇒ : designed for end-editing
⇒ : designed for front-editing

Random strategy choice

StrategyBase

boundary+32

? ? ?

boundary–64

? ? ?128

0 319 10 23

Begin End

D N G

O

32

C

51

E

60

1 insert(Begin,D,End)

2 insert(D,N,End)

3 insert(N,G,End)

4 insert(D,E,N)

⇒ no room
⇒ randomize strat
⇒ front-editing

5 insert(D,C,E)

6 insert(D,O,C)
8

Example : use case DNG ? Wait... DOCENG !
Three components :

Exponential tree
⇒ 32 nodes maximum at depth-1, 64 nodes maximum at depth-2. . .

Two allocation strategies
⇒ : designed for end-editing
⇒ : designed for front-editing

Random strategy choice

StrategyBase

boundary+32

? ? ?

boundary–64

? ? ?128

0 319 10 23

Begin End

D N G

O

32

C

51

E

60

1 insert(Begin,D,End)

2 insert(D,N,End)

3 insert(N,G,End)

4 insert(D,E,N)

⇒ no room
⇒ randomize strat
⇒ front-editing

5 insert(D,C,E)

6 insert(D,O,C)
8

Example : use case DNG ? Wait... DOCENG !
Three components :

Exponential tree
⇒ 32 nodes maximum at depth-1, 64 nodes maximum at depth-2. . .

Two allocation strategies
⇒ : designed for end-editing
⇒ : designed for front-editing

Random strategy choice

StrategyBase

boundary+32

? ? ?

boundary–64

? ? ?128

0 319 10 23

Begin End

D N G

O

32

C

51

E

60

1 insert(Begin,D,End)

2 insert(D,N,End)

3 insert(N,G,End)

4 insert(D,E,N)

⇒ no room
⇒ randomize strat
⇒ front-editing

5 insert(D,C,E)

6 insert(D,O,C)
8

Example : use case DNG ? Wait... DOCENG !
Three components :

Exponential tree
⇒ 32 nodes maximum at depth-1, 64 nodes maximum at depth-2. . .

Two allocation strategies
⇒ : designed for end-editing
⇒ : designed for front-editing

Random strategy choice

StrategyBase

boundary+32

? ? ?

boundary–64

? ? ?128

0 319 10 23

Begin End

D N G

O

32

C

51

E

60

1 insert(Begin,D,End)

2 insert(D,N,End)

3 insert(N,G,End)

4 insert(D,E,N)

⇒ no room
⇒ randomize strat
⇒ front-editing

5 insert(D,C,E)

6 insert(D,O,C)
8

Example : use case DNG ? Wait... DOCENG !
Three components :

Exponential tree
⇒ 32 nodes maximum at depth-1, 64 nodes maximum at depth-2. . .

Two allocation strategies
⇒ : designed for end-editing
⇒ : designed for front-editing

Random strategy choice

StrategyBase

boundary+32

? ? ?

boundary–64

? ? ?128

0 319 10 23

Begin End

D N G

O

32

C

51

E

60

1 insert(Begin,D,End)

2 insert(D,N,End)

3 insert(N,G,End)

4 insert(D,E,N)

⇒ no room
⇒ randomize strat
⇒ front-editing

5 insert(D,C,E)

6 insert(D,O,C)
8

Example : use case DNG ? Wait... DOCENG !
Three components :

Exponential tree
⇒ 32 nodes maximum at depth-1, 64 nodes maximum at depth-2. . .

Two allocation strategies
⇒ : designed for end-editing
⇒ : designed for front-editing

Random strategy choice

StrategyBase

boundary+32

? ? ?

boundary–64

? ? ?128

0 319 10 23

Begin End

D N G

O

32

C

51

E

60

1 insert(Begin,D,End)

2 insert(D,N,End)

3 insert(N,G,End)

4 insert(D,E,N)

⇒ no room
⇒ randomize strat
⇒ front-editing

5 insert(D,C,E)

6 insert(D,O,C)
8

Example : use case DNG ? Wait... DOCENG !
Three components :

Exponential tree
⇒ 32 nodes maximum at depth-1, 64 nodes maximum at depth-2. . .

Two allocation strategies
⇒ : designed for end-editing
⇒ : designed for front-editing

Random strategy choice

StrategyBase

boundary+32

? ? ?

boundary–64

? ? ?128

0 319 10 23

Begin End

D N G

O

32

C

51

E

60

1 insert(Begin,D,End)

2 insert(D,N,End)

3 insert(N,G,End)

4 insert(D,E,N)

⇒ no room
⇒ randomize strat
⇒ front-editing

5 insert(D,C,E)

6 insert(D,O,C)
8

Back in time : Our baseline

0 1 2 3 4 5 6
0

150

300

450

log10(nbInsert)

id
b

it
-l

en
g

th
End editing
Front editing
Random editing

random : logarithmic ⇒ very good

front and end : linear ⇒ bad

editing behaviour dependant ⇒ bad
9

Exponential tree
lower the space-complexity but still editing behaviour dependant

Each node has twice more children
than its parent

⇒ exponential ↗ number of
nodes when depth ↗

Each number in the id costs 1
more bit to encode

+ 1 bit ⇒ x2 identifiers

0 1 2 3 4 5 6
0

150

300

450

log10(nbInsert)

id
b

it
-l

en
g

th End
Front
Random

Intuition

If the number of insert operations is low, the id bit-length can stay small.
On the other hand, when the number of insertions increases, it is
profitable to allocate larger identifiers.

10

Multiple allocation strategies & Random strategy choice
solve the editing behaviour dependency but still linear

Two sub allocation strategy :

⇒ 1 designed for end-editing

⇒ 1 designed for front-editing

Allocation strategy chosen :

⇒ randomly

⇒ when id size increases 0 1 2 3 4 5 6
0

150

300

450

log10(nbInsert)

id
b

it
-l

en
g

th End
Front
Random

Intuition : Why

The end-editing allocation strategy is not sufficient to be employed as a
safe allocation strategy. However, by using its antagonist strategy, each
strategy cancels the deficiency of the other.

Intuition : Which

Since it is impossible to know a priori the editing behaviour, the strategy
choice should not favorize any behaviour.

11

LSEQ solves everything !
LSEQ = exponential tree + two sub allocation strategies + random strategy choice

0 1 2 3 4 5 6
0

150

300

450

log10(nbInsert)

id
b

it
-l

en
g

th

End editing
Front editing
Random editing

front and end : sub-linear behaviour

random : logarithmic

12

LSEQ outperforms variable-size CRDT on real documents
extracted from the English Wikipedia

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 2000 4000 6000 8000 10000 12000

n
˚

re
v
is

io
n

revision

 0

 50

 100

 150

 200

 250

 300

 350

 0 2000 4000 6000 8000 10000 12000

id
 b

it
-s

iz
e

n˚ line

Logoot
LSEQ

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 20 40 60 80 100 120 140 160 180

n
˚

re
v
is

io
n

revision

 0

 50

 100

 150

 200

 250

 300

 350

 0 20 40 60 80 100 120 140 160 180

id
 b

it
-s

iz
e

n˚ line

Logoot
LSEQ

Logoot LSEQ

id-bit-length
avg 169.7 61.24
max 256 150

Page mostly end-edited.

Logoot LSEQ

id-bit-length
avg 172.25 51.99
max 320 84

Page mostly front-edited.

13

Conclusion

LSEQ :

Allocation strategy for variable-size CRDTs for sequences

⇒ reusable (Example : Treedoc)

With 3 components :

exponential tree
2 strategies : boundary+ and boundary–
random strategy choice

Experiments show :

LSEQ has a sub-linear behaviour

under the assumption that it works in context involving concurrency
⇒ No additionnal rebalance protocol required
⇒ safely usable : large open distributed network with churn

Better performance over Logoot :

good case of Logoot – end editing
bad case of Logoot – front editing

14

Distributed Collaborative Editor 6⇒ single point of failure

LSEQ is not safe when multiple users are involved due to different
strategy choices. It has been improved by a shared hash function.

⇒ upcoming talk. . .

Goal : create Distributed Collaborative Editors which is

1 decentralized (privacy, availability, repartition of charge. . .)
2 scalable and simple
3 short overhead

15

Future works

1 Proof on space complexity

n operations : uniform distribution ⇒ O((log log n)2)
n operations : monotononic ⇒ O((log n)2)
n operations : worst-case ⇒ O(n2)

2 Proof : worst-case happens with a negligible probability

3 Concurrency effect : Latency, multiple-users ?

4 Causality tracking (still an issue in distributed systems with churn)

does not scale in term of user
or does not provide exact causality

⇒ CRDTs for sequences require causality. . .

5 Develop the distributed collaborative editor

16

Thank you !

17

