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Distributed Collaborative Editors

m DCE allow to distribute the
work across space, time,
organizations.

m example : Google Docs,
Google Wave, Etherpad, Git,
Subversion, Wikipedia,
CoVim. ..
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Current editors are not entirely satisfying

m Single point of failure : the server is down, | cannot work on my
document anymore. ..

m Privacy concern : the owner of the server owns the data. .. He can
sell it to third-party company. (e.g. advertisement company)

= As a user, | don’t want my editor got any of these!

= Deny the enslavement to a coordination provider !
= | still want something as appealing as Google Docs though. ..
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m two phases operations :
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= a very efficient approach that belongs to optimistic replication
= Conflict-free Replicated Data Types
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CRDTs for sequences

Conflict-free Replicated Data Types

simple abstract type for sequences that can model documents
optimistic replication : convergent, two phases operations . ..

avoids the difficult task of sovling conflicts

2 commutative operations : insert and delete
= ins/ins, ins/del, del/del
= except : ins(a)/del(a) = require causality : ins(a) — del(a)

1 identifier for each element in sequence

m document — character, line, paragraph. ..
unique, non mutable identifier

totally ordered

the order on ids makes the sequence

= delete(idefement)

= insert(idp, element, id,) = alloc (idp, idg) = idp < idejement < idg
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Allocation of identifiers matters
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m linearly growing ids
m document with 1000 lines = max(id.size) = 1000



Problem : lowering the size of identifiers

Variable-size identifier
A variable-size identifier id is
a sequence of numbers
id = [p1.p2 ... pn] which can .
designate a path in a tree. Begin End

Problem statement

Let D a document on which n insert operations have been performed. Let
Z(D) = {id|(-, id) € D}. The function alloc(id,, idg) should provide
identifiers such as :

= No cleaning of the structure required !
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Proposal : LSEQ

LSEQ relies on 3 components :

m exponential tree : we assume that when  depth, it means that a
lot of insertions were done and more are probably upcoming. We need
more available nodes

m multiple allocation strategies : a strategy designed for end-editing
is not sufficient to handle any editing behaviour

m random strategy choice : | have multiple sub allocation strategies.
Which one should | choose ?

Intuition

As it is complex to predict the editing behaviour, some depths of the tree
on a given path can be lost if the reward compensates the loss.

In other terms, even if LSEQ chooses the wrong strategy at a given time,
it will eventually choose the good one, and that choice will amortize the
cost of all previous lost depths.
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Back in time : Qur baseline

| —=— Random editing
450 1 —— Front editing

= 1 —e— End editing
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0 1 2 3 4 5 6
logio(nblnsert)
m random : logarithmic = very good

m front and end : linear = bad
m editing behaviour dependant = bad



Exponential tree

lower the space-complexity but still editing behaviour dependant

Each node has twice more children
than its parent
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Each number in the id costs 1

more bit to encode : - ; . .
0 1 2 3 4 5 6
logio(nblnsert)

+ 1 bit = x2 identifiers

Intuition

If the number of insert operations is low, the id bit-length can stay small.
On the other hand, when the number of insertions increases, it is
profitable to allocate larger identifiers.
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Multiple allocation strategies & Random strategy choice

solve the editing behaviour dependency but still linear

Two sub allocation strategy :

450 -

= 1 designed for end-editing £ Er%q
= 1 designed for front-editing 5300
Allocation strategy chosen : :_‘;150

= randomly

e 0 —F —
= when id size increases 0 1 2 3 4 5 6
logio(nblnsert)

Intuition : Why

The end-editing allocation strategy is not sufficient to be employed as a
safe allocation strategy. However, by using its antagonist strategy, each
strategy cancels the deficiency of the other.

Intuition : Which
Since it is impossible to know a priori the editing behaviour, the strategy
choice should not favorize any behaviour.
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LSEQ solves everything !

LSEQ = exponential tree 4+ two sub allocation strategies + random strategy choice

] —s— Random editin
450 7 —— Front editing &
g —e— End editing
<=
< i
2
b 300 -
= i
) i
2 150 1
0 , ' , : , ,

0 1 2 3 4 5 6
logio(nblnsert)

m front and end : sub-linear behaviour

m random : logarithmic

12



LSEQ outperforms variable-size CRDT on real documents
extracted from the English Wikipedia

revision T——1

0" revision
0" revision

140 160

8

id bit-size
id bit-size

0 2000 4000 6000 8000 10000 12000 0 20 40 60 80 100 120 140 160 180

Logoot | LSEQ Logoot | LSEQ
S avg 169.7 | 61.24 S avg | 172.25 | 51.99
id-bit-length e 556 150 id-bit-length max 390 84

Page mostly end-edited. Page mostly front-edited.



Conclusion

LSEQ :
m Allocation strategy for variable-size CRDTs for sequences
= reusable (Example : Treedoc)
m With 3 components :

m exponential tree
m 2 strategies : boundary+ and boundary-
m random strategy choice

Experiments show :
m LSEQ has a sub-linear behaviour

m under the assumption that it works in context involving concurrency
= No additionnal rebalance protocol required
=- safely usable : large open distributed network with churn

m Better performance over Logoot :

m good case of Logoot — end editing
m bad case of Logoot — front editing
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Distributed Collaborative Editor # single point of failure

m LSEQ is not safe when multiple users are involved due to different
strategy choices. It has been improved by a shared hash function.

= upcoming talk. ..

m Goal : create Distributed Collaborative Editors which is
decentralized (privacy, availability, repartition of charge. ..)
scalable and simple
short overhead
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Future works

Proof on space complexity
m n operations : uniform distribution = O((log log n)?)
m n operations : monotononic = O((log n)?)
m n operations : worst-case = O(n?)

Proof : worst-case happens with a negligible probability
Concurrency effect : Latency, multiple-users?
Causality tracking (still an issue in distributed systems with churn)

m does not scale in term of user
m or does not provide exact causality
= CRDTs for sequences require causality. . .

Develop the distributed collaborative editor

16



Thank you!
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