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Collaborative editing applications

Synchronous collaboration

Changes observed immediately
Merge concurrent updates by operations

Asynchronous Collaboration

Changes observed after commit
Merge concurrent updates by states

Synchronous application supports disconnected collaboration

Multi-synchronous applications

Satisfy users intention during concurrent updates

Keep awareness information to show to users the concurrent
modifications
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Limitations of existing Solutions
1- Google Drive

Merge updates after disconnected
periods

Semantic errors
Violatation of user intention

Different problems can occur

Concurrent updates on the same sentence
Typographic errors
Cursor position
Update loss

Limitations:
Mechanism provides less awareness information

Linearisation of the history

Keep only the previous revisions of the documents
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Limitations of existing Solutions
2- Microsoft SkyDrive

Users are forced to synchronize their documents explicitly

Send the document to the server

Solve conflicts manually if there were conflicting update

Limitation:

Weak awareness and no synchronous update



Introduction Solution for managing Shared document Evaluation Conclusion and perspectives

Solution and idea

Goal

Improve multi-synchronous collaborative editing application

Integrate concurrency control mechanisms
Keep more awareness information
Respect user intentions

How ?

Propose policies for handling conflicting operations

Offer new operations

update and move

Verify if the policies preserve the user intention
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Conflict-free Replicated Data Types (CRDT)

Class of distributed data type

Modifications without coordination

Replica converge to the same value when all updates are
propagated

Two types of CRDT:
1 Operation− based : modifications are propagated as operations
2 State − based : modifications are propagated as states

Operation − based CRDT more adapted to synchronous
collaboration
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System Model

Each node maintains a replica of the shared document

Updates are propagated to all replica nodes

Interface of document CRDT includes: insert, delete, update
and move

Updates are delivered in causal order

Deployment in any architecture
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Policy for Handling Conflicting Operations

insert update delete move

insert keep two not possible not possible not possible
elements
highlight - - -

new elems.

update - create delete move the
versions element updated version

- show both show del. highlight
versions element

delete - - delete delete
element

- - nothing show del.
needed element

move - - - create clones
- - - highlight

- - clones

Table: Handling of concurrent updates to the same element and associated awareness solution
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Structure

...
<Pos2, id1>          //variables
<Pos3, id3>          int y;
<Pos4, id1>          //variables
<Pos5, id2>          int z;
...

DocumentsPositions

valueselements

id1

id2

id3

<(val11, "//variables")>

<(val21, "int z;")>

<(val31, "int y;")>

{Pos2, Pos4}

{Pos5}

{Pos3}
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Structure

...
<Pos2, id1>          //variables
<Pos3, id3>          int y; int x;
<Pos4, id4>          //variables
<Pos5, id2>          int z;
...

DocumentsPositions

valueselements

id1

id2

id3

(val1, "//variables")

(val2, "int z;")

<(val31, "int x;"), (val32, "int y=0;")>

{Pos2, Pos4}

{Pos5}

{Pos3}

Local: update(3, "int x;")
Remote: update(3, "int y=0;")

>>>>>>>local

int x;
==== origin

int y;
<<<<< remote

int y=0;

Awarness information
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Structure

...
<Pos2, id1>          //variables
<Pos3, id3>          int x;
<Pos4, id1>          //variables
<Pos5, id2>          int z;
...

DocumentsPositions

valueselements

id1

id2

id3

<(val11, "//variables")>

<(val21, "int z;")>

<(val31, "int x;")>

{Pos2, Pos4}

{Pos5}

{Pos3}

operation: move(3, 6)
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Structure

...
<Pos2, id1>          //variables
<Pos4, id1>          //variables
<Pos5, id2>          int z;
<Pos6, id3>          int x;
...

DocumentsPositions

valueselements

id1

id2

id3

<(val11, "//variables")>

<(val21, "int z;")>

<(val31, "int x;")>

{Pos2, Pos4}

{Pos5}

{Pos6}

operation: move(3, 6)
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Structure

...
<Pos2, id1>          //variables
<Pos4, id1>          //variables
<Pos5, id2>          int z;
<Pos6, id3>          int x; 
...

DocumentsPositions

valueselements

id1

id2

id3

<(val11, "//variables")>

<(val21, "int z;")>

<(val31, "int x;")>

{Pos2, Pos4}

{Pos5}

{Pos6}

operation: del(2)
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Evaluation Method

Replays the history of Git repositories

By different op-based algorithms

Transforms the state of the document to the set of operations

Detects update and move operations

Compare the number of modifications using our solution and
another op-based algorithm
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Operation Detection

Compute distance of editions δi ,j for each line

Define Threshold Update (Tu) and Threshold Move(Tm)

δi,j <Tu → update operation
δi,j <Tm → move operation

- % test if x is greater than 0
- int a;
- Object toto;
- if (x > 0)
==================
+ % file procedure
+ % useful for stuff 
+ % test if x is greater or equal than 0
+ int a=0;
+ File f;
+ if (x >= 0)

+ % file procedure
+ % useful for stuff 

- % test if x is greater than 0
- int a;
==================
+ % test if x is greater or equal than 0
+ int a=0;

- Object toto;

+ File f;

- if (x > 0)
==================
+ if (x >= 0)Tu= 0.3

Insert

Update

Delete

Insert

update
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Experiment

Estimate the adequate Tu and Tm
1 Execute the algorithm in git/git repository
2 Vary (Tu, Tm) from 0% to 100% in steps of 10%

Compute the difference between user merges and automated
merges computed by our algorithm

Treedoc1 is used as reference and compared with
move/update algorithm

1Nuno P et al. A Commutative Replicated Data Type for Cooperative
Editing
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Results
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Best performance is obtained with Tu=0.9 and Tm=0.2

Gain is 18% in git/git repository

More results, see the paper !
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Conclusion and perspectives

Conclusion

Solution for supporting multi-synchronous collaborative editing

Extend the traditional interface of document

Different granularity
Support move and update operations

Keep more awareness information than traditional applications

Perspectives

Introduce undo/redo mechanism

Integrate our algorithm in a cloud-based web editing tool that
supports geo-replication.
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Thank you for your attention
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