Concurrency Control and Awareness Support for
Multi-synchronous Collaborative Editing

Mehdi Ahmed-Nacer, Valter Balegas,
Pascal Urso and Nuno Preguica

University of Lorraine - LORIA Laboratory - France
Nova de Lisboa - Portugal

mehdi.ahmed-nacer@Ioria.fr

This work is partially funded by the french national research programs
CONCORDANT.

(CRSIDAD,
> €,
$3 %,

&

DE LORRAINE -

“kOgsn 20 %

Introduction
°

Collaborative editing applications

Synchronous collaboration

o Changes observed immediately
e Merge concurrent updates by operations

Asynchronous Collaboration

o Changes observed after commit
e Merge concurrent updates by states

Synchronous application supports disconnected collaboration
e Multi-synchronous applications

Satisfy users intention during concurrent updates

Keep awareness information to show to users the concurrent
modifications

Introduction
.

Limitations of existing Solutions

1- Google Drive

@ Merge updates after disconnected
periods } Google prive

e Semantic errors \
e Violatation of user intention -n,amﬁzm

@ Different problems can occur

o Concurrent updates on the same sentence
e Typographic errors
o Cursor position
e Update loss
e Limitations:
e Mechanism provides less awareness information
o Linearisation of the history

o Keep only the previous revisions of the documents

Introduction
°

Limitations of existing Solutions

2- Microsoft SkyDrive

@ Users are forced to synchronize their documents explicitly
@ Send the document to the server

@ Solve conflicts manually if there were conflicting update
o Limitation:
o Weak awareness and no synchronous update

@ SkyDrive

Introduction
°

Solution and idea

@ Improve multi-synchronous collaborative editing application
e Integrate concurrency control mechanisms
o Keep more awareness information
e Respect user intentions

@ Propose policies for handling conflicting operations
o Offer new operations
e update and move

@ Verify if the policies preserve the user intention

Solution for managing Shared document
.

Conflict-free Replicated Data Types (CRDT)

o Class of distributed data type

@ Modifications without coordination

@ Replica converge to the same value when all updates are
propagated

@ Two types of CRDT:

@ Operation — based: modifications are propagated as operations
@ State — based: modifications are propagated as states

@ Operation — based CRDT more adapted to synchronous
collaboration

Solution for managing Shared document
.

System Model

@ Each node maintains a replica of the shared document

@ Updates are propagated to all replica nodes

@ Interface of document CRDT includes: insert, delete, update
and move

@ Updates are delivered in causal order

@ Deployment in any architecture

Solution for managing Shared document

Policy for Handling Conflicting Operations

] insert | update | delete | move
insert keep two | not possible | not possible not possible
elements
highlight - - -
new elems.
update - create delete move the
versions element updated version
- show both show del. highlight
versions element
delete - - delete delete
element
- - nothing show del.
needed element
move - - - create clones
- - - highlight
- - clones

Table: Handling of concurrent updates to the same element and associated awareness solution

Structure

Solution for managing Shared document

Positions Documents
<Pos2, idl> //variables
<Pos3, id3> int y;
<Pos4, idl> //variables
<Pos5, id2> int z;

elements values
id1 {Pos2, Pos4}
<(val, "//variables")>
{Pos5}
id2
<(val21, "int z;")>
{Pos3}
id3

<(val3y, "int y;")>

Solution for managing Shared document
°

Structure

elements values
Local: update(3, "int x;")
Remote: update(3, "int y=0;")

{Pos2, Pos4}

Positions Documents idi -
(vall, "//variables")
<Pos2, idl> //variables
<Pos3, id3> ==y int x; id2 {Pos5}
<Pos4, id4> //variables
<Pos5, id2> int z; (val2, "int z;")
Pos3
id3 (¥

<(valsy, "int x;"), (vals, "int y=0;")>
>>>>>>>local)

Awarness information

Solution for managing Shared document
°

Structure

elements values
operation: move(3, 6)

{Pos2, Pos4}

Positions Documents idl
<(val, "//variables")>
<Pos2, idl> //variables
<Pos3, id3> int x; id2 {Pos5}
<Pos4, idl> //variables
<Pos5, id2> int z; <(valzy, "int z;")>
Pos3
id3 { ¥

<(valsi, "int x;")>

Solution for managing Shared document
°

Structure

elements values
operation: move(3, 6)

{Pos2, Pos4}

Positions Documents id1
<(valu, "//variables")>
<Pos2, idl> //variables
<Posd, id1> //variables id2 {Pos5}
<Pos5, id2> int z;
<Pos6, id3> int x; <(valz1, "int z;")>
{Pos6}
id3

<(valsi, "int x;")>

Solution for managing Shared document

Structure

elements values
operation: del(2)
(a1 {Pps3, Pos4}
Positions Documents 1
<(valu, "//variables")>
<Posd, id1> //variables id2 {Pos5}
<Pos5, id2> int z;
<Pos6, id3> int x; <(val21, "int z;")>
Pos6
id3 { y
<(val3i, "int x;*)>

Evaluation
°

Evaluation Method

Replays the history of Git repositories
e By different op-based algorithms

Transforms the state of the document to the set of operations

Detects update and move operations

Compare the number of modifications using our solution and
another op-based algorithm

Evaluation
°

Operation Detection

@ Compute distance of editions d; ; for each line

@ Define Threshold Update (Tu) and Threshold Move(Tm)

e §;j <Tu — update operation
e §;j <Tm — move operation

Insert| * % file procedure
- % test if x is greater than 0@ + % useful for stuff
- int a;
- Object toto; - % test if x is greater than 0

if (x >0 - int a;
Update
+ % test if x is greater or equal than 0

+ % useful for stuff + int a=0;
+ % test if x is greater or equal than 0
+ int a=0; Delete | - Object toto;
+ File f;
+if (x >= 0) Insert| + File f;

update| =

Tu=03 17 62 2=)

Evaluation
.

Experiment

@ Estimate the adequate Tu and Tm
© Execute the algorithm in git/git repository
@ Vary (Tu, Tm) from 0% to 100% in steps of 10%
@ Compute the difference between user merges and automated
merges computed by our algorithm
@ Treedoc! is used as reference and compared with
move/update algorithm

!Nuno P et al. A Commutative Replicated Data Type for Cooperative
Editing

Evaluation
°

Results

Move and update
Treedoc

6000-6200
= 5800-6000
 5600-5800
= 5400-5600
= 5200-5400
= 5000-5200
 4800-5000

@ Best performance is obtained with Tu=0.9 and Tm=0.2
e Gain is 18% in git/git repository

@ More results, see the paper !

6000-6200
= 5800-6000
= 5600-5800
= 5400-5600
5200-5400
= 5000-5200
= 4800-5000

Conclusion and perspectives
°

Conclusion and perspectives

Conclusion

@ Solution for supporting multi-synchronous collaborative editing

@ Extend the traditional interface of document

o Different granularity
e Support move and update operations

@ Keep more awareness information than traditional applications
v

@ Introduce undo/redo mechanism

@ Integrate our algorithm in a cloud-based web editing tool that
supports geo-replication.

Conclusion and perspectives
°

Thank you for your attention

	Introduction
	Collaborative editing applications
	Limitations of existing Solutions
	Limitations of existing Solutions
	Solution and idea

	Solution for managing Shared document
	Conflict-free Replicated Data Types (CRDT)
	System Model
	Policy for Handling Conflicting Operations
	Structure

	Evaluation
	Evaluation Method
	Operation Detection
	Experiment
	Results

	Conclusion and perspectives
	Conclusion and perspectives

