
Introduction Solution for managing Shared document Evaluation Conclusion and perspectives

Concurrency Control and Awareness Support for
Multi-synchronous Collaborative Editing

Mehdi Ahmed-Nacer, Valter Balegas,
Pascal Urso and Nuno Preguiça

University of Lorraine - LORIA Laboratory - France
Nova de Lisboa - Portugal

mehdi.ahmed-nacer@loria.fr

This work is partially funded by the french national research programs
ConcoRDanT.

Introduction Solution for managing Shared document Evaluation Conclusion and perspectives

Collaborative editing applications

Synchronous collaboration

Changes observed immediately
Merge concurrent updates by operations

Asynchronous Collaboration

Changes observed after commit
Merge concurrent updates by states

Synchronous application supports disconnected collaboration

Multi-synchronous applications

Satisfy users intention during concurrent updates

Keep awareness information to show to users the concurrent
modifications

Introduction Solution for managing Shared document Evaluation Conclusion and perspectives

Limitations of existing Solutions
1- Google Drive

Merge updates after disconnected
periods

Semantic errors
Violatation of user intention

Different problems can occur

Concurrent updates on the same sentence
Typographic errors
Cursor position
Update loss

Limitations:
Mechanism provides less awareness information

Linearisation of the history

Keep only the previous revisions of the documents

Introduction Solution for managing Shared document Evaluation Conclusion and perspectives

Limitations of existing Solutions
2- Microsoft SkyDrive

Users are forced to synchronize their documents explicitly

Send the document to the server

Solve conflicts manually if there were conflicting update

Limitation:

Weak awareness and no synchronous update

Introduction Solution for managing Shared document Evaluation Conclusion and perspectives

Solution and idea

Goal

Improve multi-synchronous collaborative editing application

Integrate concurrency control mechanisms
Keep more awareness information
Respect user intentions

How ?

Propose policies for handling conflicting operations

Offer new operations

update and move

Verify if the policies preserve the user intention

Introduction Solution for managing Shared document Evaluation Conclusion and perspectives

Conflict-free Replicated Data Types (CRDT)

Class of distributed data type

Modifications without coordination

Replica converge to the same value when all updates are
propagated

Two types of CRDT:
1 Operation− based : modifications are propagated as operations
2 State − based : modifications are propagated as states

Operation − based CRDT more adapted to synchronous
collaboration

Introduction Solution for managing Shared document Evaluation Conclusion and perspectives

System Model

Each node maintains a replica of the shared document

Updates are propagated to all replica nodes

Interface of document CRDT includes: insert, delete, update
and move

Updates are delivered in causal order

Deployment in any architecture

!"#$%&
'(

)(

Introduction Solution for managing Shared document Evaluation Conclusion and perspectives

Policy for Handling Conflicting Operations

insert update delete move

insert keep two not possible not possible not possible
elements
highlight - - -

new elems.

update - create delete move the
versions element updated version

- show both show del. highlight
versions element

delete - - delete delete
element

- - nothing show del.
needed element

move - - - create clones
- - - highlight

- - clones

Table: Handling of concurrent updates to the same element and associated awareness solution

Introduction Solution for managing Shared document Evaluation Conclusion and perspectives

Structure

...
<Pos2, id1> //variables
<Pos3, id3> int y;
<Pos4, id1> //variables
<Pos5, id2> int z;
...

DocumentsPositions

valueselements

id1

id2

id3

<(val11, "//variables")>

<(val21, "int z;")>

<(val31, "int y;")>

{Pos2, Pos4}

{Pos5}

{Pos3}

Introduction Solution for managing Shared document Evaluation Conclusion and perspectives

Structure

...
<Pos2, id1> //variables
<Pos3, id3> int y; int x;
<Pos4, id4> //variables
<Pos5, id2> int z;
...

DocumentsPositions

valueselements

id1

id2

id3

(val1, "//variables")

(val2, "int z;")

<(val31, "int x;"), (val32, "int y=0;")>

{Pos2, Pos4}

{Pos5}

{Pos3}

Local: update(3, "int x;")
Remote: update(3, "int y=0;")

>>>>>>>local

int x;
==== origin

int y;
<<<<< remote

int y=0;

Awarness information

Introduction Solution for managing Shared document Evaluation Conclusion and perspectives

Structure

...
<Pos2, id1> //variables
<Pos3, id3> int x;
<Pos4, id1> //variables
<Pos5, id2> int z;
...

DocumentsPositions

valueselements

id1

id2

id3

<(val11, "//variables")>

<(val21, "int z;")>

<(val31, "int x;")>

{Pos2, Pos4}

{Pos5}

{Pos3}

operation: move(3, 6)

Introduction Solution for managing Shared document Evaluation Conclusion and perspectives

Structure

...
<Pos2, id1> //variables
<Pos4, id1> //variables
<Pos5, id2> int z;
<Pos6, id3> int x;
...

DocumentsPositions

valueselements

id1

id2

id3

<(val11, "//variables")>

<(val21, "int z;")>

<(val31, "int x;")>

{Pos2, Pos4}

{Pos5}

{Pos6}

operation: move(3, 6)

Introduction Solution for managing Shared document Evaluation Conclusion and perspectives

Structure

...
<Pos2, id1> //variables
<Pos4, id1> //variables
<Pos5, id2> int z;
<Pos6, id3> int x;
...

DocumentsPositions

valueselements

id1

id2

id3

<(val11, "//variables")>

<(val21, "int z;")>

<(val31, "int x;")>

{Pos2, Pos4}

{Pos5}

{Pos6}

operation: del(2)

Introduction Solution for managing Shared document Evaluation Conclusion and perspectives

Evaluation Method

Replays the history of Git repositories

By different op-based algorithms

Transforms the state of the document to the set of operations

Detects update and move operations

Compare the number of modifications using our solution and
another op-based algorithm

Introduction Solution for managing Shared document Evaluation Conclusion and perspectives

Operation Detection

Compute distance of editions δi ,j for each line

Define Threshold Update (Tu) and Threshold Move(Tm)

δi,j <Tu → update operation
δi,j <Tm → move operation

- % test if x is greater than 0
- int a;
- Object toto;
- if (x > 0)
==================
+ % file procedure
+ % useful for stuff
+ % test if x is greater or equal than 0
+ int a=0;
+ File f;
+ if (x >= 0)

+ % file procedure
+ % useful for stuff

- % test if x is greater than 0
- int a;
==================
+ % test if x is greater or equal than 0
+ int a=0;

- Object toto;

+ File f;

- if (x > 0)
==================
+ if (x >= 0)Tu= 0.3

Insert

Update

Delete

Insert

update

Introduction Solution for managing Shared document Evaluation Conclusion and perspectives

Experiment

Estimate the adequate Tu and Tm
1 Execute the algorithm in git/git repository
2 Vary (Tu, Tm) from 0% to 100% in steps of 10%

Compute the difference between user merges and automated
merges computed by our algorithm

Treedoc1 is used as reference and compared with
move/update algorithm

1Nuno P et al. A Commutative Replicated Data Type for Cooperative
Editing

Introduction Solution for managing Shared document Evaluation Conclusion and perspectives

Results

0

30

60

90

4800

5000

5200

5400

5600

5800

6000

6200

0 10 20 30 40 50 60 70 80 90 100

Tm

Tu

Treedoc
6000-6200

5800-6000

5600-5800

5400-5600

5200-5400

5000-5200

4800-5000

0

30

60

90

4800

5000

5200

5400

5600

5800

6000

6200

0 10 20 30 40 50 60 70 80 90 100

Tm

Tu

Move and update

6000-6200

5800-6000

5600-5800

5400-5600

5200-5400

5000-5200

4800-5000

Best performance is obtained with Tu=0.9 and Tm=0.2

Gain is 18% in git/git repository

More results, see the paper !

Introduction Solution for managing Shared document Evaluation Conclusion and perspectives

Conclusion and perspectives

Conclusion

Solution for supporting multi-synchronous collaborative editing

Extend the traditional interface of document

Different granularity
Support move and update operations

Keep more awareness information than traditional applications

Perspectives

Introduce undo/redo mechanism

Integrate our algorithm in a cloud-based web editing tool that
supports geo-replication.

Introduction Solution for managing Shared document Evaluation Conclusion and perspectives

Thank you for your attention

	Introduction
	Collaborative editing applications
	Limitations of existing Solutions
	Limitations of existing Solutions
	Solution and idea

	Solution for managing Shared document
	Conflict-free Replicated Data Types (CRDT)
	System Model
	Policy for Handling Conflicting Operations
	Structure

	Evaluation
	Evaluation Method
	Operation Detection
	Experiment
	Results

	Conclusion and perspectives
	Conclusion and perspectives

